【題目】設(shè)是奇函數(shù),是偶函數(shù),且其中.

1)求的表達(dá)式,并求函數(shù)的值域

2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)不等實(shí)根,求常數(shù)的取值范圍

【答案】1值域?yàn)?/span>2

【解析】

1)由函數(shù)的奇偶性可得,再結(jié)合條件列方程組求解,進(jìn)而可得,利用函數(shù)單調(diào)性可求得值域;

2)由題意得方程在區(qū)間內(nèi)恰有兩個(gè)不等實(shí)根,,則可將方程轉(zhuǎn)化為在區(qū)間內(nèi)有唯一實(shí)根,利用函數(shù)單調(diào)性求得函數(shù)的值域,進(jìn)而可得常數(shù)的取值范圍.

1)由已知①,

,得,

因?yàn)?/span>是奇函數(shù),是偶函數(shù),

所以,

聯(lián)立①②可得,

,

,,,于是

函數(shù)的值域?yàn)?/span>;

2)題意即方程在區(qū)間內(nèi)恰有兩個(gè)不等實(shí)根.

顯然不是該方程的根,所以令

,則原方程可變形為

易知函數(shù)為偶函數(shù),且在區(qū)間內(nèi)單調(diào)遞增,所以

且題意轉(zhuǎn)化為方程在區(qū)間內(nèi)有唯一實(shí)根(因?yàn)槊恳粋(gè)在區(qū)間內(nèi)恰有兩個(gè)值與之對應(yīng)).

易知在區(qū)間內(nèi)單調(diào)遞減,

時(shí),,

所以(此時(shí)每一個(gè),在區(qū)間內(nèi)有且僅有一個(gè)值與之對應(yīng)).

綜上所述,所求常數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,定長為3的線段兩端點(diǎn)分別在軸,軸上滑動(dòng),在線段上,且.

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)點(diǎn)是軌跡上一點(diǎn),從原點(diǎn)向圓作兩條切線分別與軌跡交于點(diǎn),,直線,的斜率分別記為,.

①求證:;

②求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐SABCD中,底面ABCD是邊長為4的菱形,∠BAD60°,SASD2,點(diǎn)E是棱AD的中點(diǎn),點(diǎn)F在棱SC上,且λ,SA//平面BEF

1)求實(shí)數(shù)λ的值;

2)求三棱錐FEBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對于曲線上任意點(diǎn)處的切線,總存在上處的切線,使得,則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,分別為棱的中點(diǎn).已知,.

求證:(1)直線PA平面DEF;

(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

(2)將函數(shù)的圖象向左平移個(gè)單位后,所得圖象對應(yīng)的函數(shù)為.若關(guān)于的方程在區(qū)間上有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓:,直線.

(1)若直線與圓相切,的值;

(2)若直線與圓交于不同的兩點(diǎn),當(dāng)∠AOB為銳角時(shí),k的取值范圍;

(3),是直線上的動(dòng)點(diǎn),作圓的兩條切線,切點(diǎn)為,探究:直線是否過定點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),試求的單調(diào)區(qū)間;

(2)若內(nèi)有極值,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面ABCD為直角梯形,,,點(diǎn)EAD的中點(diǎn),,平面ABCD,且

(1)求證:;

(2)線段PC上是否存在一點(diǎn)F,使二面角的余弦值是?若存在,請找出點(diǎn)F的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案