【題目】一個(gè)三棱錐的三視圖如下圖所示,則該幾何體的體積為

A. B. C. D.

【答案】C

【解析】由三視圖可得到如圖所示幾何體,該幾何體是由正方體切割得到的,利用傳統(tǒng)法或空間向量法可求得三棱錐的高為,∴該幾何體的體積為.

點(diǎn)睛:三視圖問(wèn)題的常見(jiàn)類型及解題策略

(1)由幾何體的直觀圖求三視圖.注意正視圖、側(cè)視圖和俯視圖的觀察方向,注意看到的部分用實(shí)線表示,不能看到的部分用虛線表示.

(2)由幾何體的部分視圖畫(huà)出剩余的部分視圖.先根據(jù)已知的一部分三視圖,還原、推測(cè)直觀圖的可能形式,然后再找其剩下部分三視圖的可能形式.當(dāng)然作為選擇題,也可將選項(xiàng)逐項(xiàng)代入,再看看給出的部分三視圖是否符合.

(3)由幾何體的三視圖還原幾何體的形狀.要熟悉柱、錐、臺(tái)、球的三視圖,明確三視圖的形成原理,結(jié)合空間想象將三視圖還原為實(shí)物圖.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知半徑為5的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切

1求圓的方程;

2設(shè)直線與圓相交于、兩點(diǎn),求實(shí)數(shù)的取值范圍;

32的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過(guò)點(diǎn)?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,,的中點(diǎn),是等腰三角形,的中點(diǎn),上一點(diǎn).

I)若平面,求;

II)平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知A= ,b2﹣a2= c2
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于y=3sin(2x﹣ )有以下命題:
①f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z);
②函數(shù)的解析式可化為y=3cos(2x﹣ );
③圖象關(guān)于x=﹣ 對(duì)稱;④圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱.
其中正確的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,兩焦點(diǎn)分別為,右頂點(diǎn)為, .

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)過(guò)定點(diǎn)的直線與雙曲線的左支有兩個(gè)交點(diǎn),與橢圓交于兩點(diǎn),與圓交于兩點(diǎn),若的面積為, ,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列不等式:
(1)2x2+x﹣1<0
(2)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,設(shè)

(1)求函數(shù)的解析式及單調(diào)遞增區(qū)間;

(2)在中,分別為內(nèi)角的對(duì)邊,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)分別求函數(shù)在區(qū)間上的極值;

(2)求證:對(duì)任意

查看答案和解析>>

同步練習(xí)冊(cè)答案