【題目】已知半徑為5的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線(xiàn)相切

1求圓的方程;

2設(shè)直線(xiàn)與圓相交于、兩點(diǎn),求實(shí)數(shù)的取值范圍;

32的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線(xiàn)過(guò)點(diǎn)?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由

【答案】1;2;3

【解析】

試題分析:1利用點(diǎn)到直線(xiàn)的距離求出半徑,從而求圓的方程;2利用圓心到直線(xiàn)的距離小于半徑可求出實(shí)數(shù)的取值范圍;3假設(shè)存在利用直線(xiàn)與圓的位置關(guān)系性質(zhì)解決

試題解析:解:1設(shè)圓心為,由于圓與直線(xiàn)相切,且半徑為5,所以,且,故圓的方程:

2代入圓的方程得,

,,且

3假設(shè)存在,由于,則,所以直線(xiàn)方程:

由于垂直平分,故圓心必在上,所以,解得

由于,故存在實(shí)數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表提供了某廠節(jié)油降耗技術(shù)發(fā)行后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量 x ()與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn))的幾組對(duì)應(yīng)數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

1請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;

2請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出 y 關(guān)于 x 的線(xiàn)性回歸方程

3已知該廠技改前 100 噸甲產(chǎn)品的生產(chǎn)能耗為 90 噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線(xiàn)性回歸方程,預(yù)測(cè)生產(chǎn)100 噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少?lài)崢?biāo)準(zhǔn)煤?(參考數(shù)值3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為偶函數(shù).

(1)求實(shí)數(shù)的值;

(2)記集合, , ,判斷的關(guān)系;

(3)當(dāng) (m>0,n>0)時(shí),若函數(shù)f(x)的值域?yàn)閇2-3m,2-3n],求m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)G為△ABC的重心,過(guò)G作直線(xiàn)l分別交線(xiàn)段AB,AC(不與端點(diǎn)重合)于P,Q.若 ,

(1)求 的值;
(2)求λμ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,平面平面,四邊形是菱形,四邊形是矩形,,,,的中點(diǎn).

(Ⅰ)求證:平面;

(II)在線(xiàn)段上是否存在點(diǎn),使三棱錐的體積為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2n﹣1.?dāng)?shù)列{bn}滿(mǎn)足b1=2,bn+1﹣2bn=8an
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)證明:數(shù)列{ }為等差數(shù)列,并求{bn}的通項(xiàng)公式.
(3)求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于回歸分析的說(shuō)法中錯(cuò)誤的是( )

A. 回歸直線(xiàn)一定過(guò)樣本中心

B. 殘差圖中殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明選用的模型比較合適

C. 兩個(gè)模型中殘差平方和越小的模型擬合的效果越好

D. 甲、乙兩個(gè)模型的分別約為0.98和0.80,則模型乙的擬合效果更好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù){an}:a1=t,n2Sn+1=n2(Sn+an)+an2 , n=1,2,….
(1)設(shè){an}為等差數(shù)列,且前兩項(xiàng)和S2=3,求t的值;
(2)若t= ,證明: ≤an<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)三棱錐的三視圖如下圖所示,則該幾何體的體積為

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案