【題目】已知函數(shù).

(1)求函數(shù)的極值;

(2)若函數(shù)有兩個(gè)零點(diǎn),且,證明:.

【答案】(1)答案見解析;(2)證明見解析.

【解析】分析:(1)求出,分兩種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間,根據(jù)單調(diào)性可得函數(shù)的極值;(2)為函數(shù)零點(diǎn),可得,要證,只需證,,令,上是增函數(shù),∴,從而可得結(jié)論.

詳解(1)函數(shù)的定義域?yàn)?/span>.

.

當(dāng)時(shí),上是減函數(shù),所以上無極值;

當(dāng)時(shí),若,上是減函數(shù).

當(dāng),,上是增函數(shù),

故當(dāng)時(shí),上的極小值為.

(2)證明:當(dāng)時(shí),,可證明

由(1)知,上是減函數(shù),在上是增函數(shù),是極值點(diǎn),

,為函數(shù)零點(diǎn),所以,要證,只需證.

,又

,

,

,

,

上是增函數(shù),∴,∴,

,即得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品要了解年廣告費(fèi)(單位:萬元)對(duì)年利潤(單位:萬元)的影響,對(duì)近4年的年廣告費(fèi)和年利潤數(shù)據(jù)作了初步整理,得到下面的表格:

廣告費(fèi)

2

3

4

5

年利潤

26

39

49

54

(Ⅰ)用廣告費(fèi)作解釋變量,年利潤作預(yù)報(bào)變量,建立關(guān)于的回歸直線方程;

(Ⅱ)根據(jù)(Ⅰ)的結(jié)果預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)的年利潤.

附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),若以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知圓的極坐標(biāo)方程為,設(shè)是圓上任一點(diǎn),連結(jié)并延長到,使.

(1)求點(diǎn)軌跡的直角坐標(biāo)方程;

(2)若直線與點(diǎn)軌跡相交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為平面內(nèi)不共線的三點(diǎn),表示的面積

(1)若

(2)若,,,證明:

(3)若,,,其中,且坐標(biāo)原點(diǎn)恰好為的重心,判斷是否為定值,若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)元,未租出的車每輛每月需要維護(hù)費(fèi).

1)當(dāng)每輛車的月租金定為元時(shí),能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的有________(只填序號(hào))

①若直線與平面有無數(shù)個(gè)公共點(diǎn),則直線在平面內(nèi);

②若直線l上有無數(shù)個(gè)點(diǎn)不在平面α內(nèi),lα;

③若兩條異面直線中的一條與一個(gè)平面平行,則另一條直線一定與該平面相交;

④若直線l與平面α平行,l與平面α內(nèi)的直線平行或異面;

⑤若平面α∥平面β,直線aα,直線bβ,則直線ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)恒過定點(diǎn)

(1)求實(shí)數(shù)

(2)在(1)的條件下,將函數(shù)的圖象向下平移個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式.

(3)對(duì)于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的公比,前項(xiàng)和為,且滿足.,,分別是一個(gè)等差數(shù)列的第1項(xiàng),第2項(xiàng),第5項(xiàng).

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和

(3)若,的前項(xiàng)和為,且對(duì)任意的滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中, (0<λ<1),cosC= ,cos∠ADC=
(1)若AC=5.BC=7,求AB的大;
(2)若AC=7,BD=10,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案