【題目】已知函數(shù)上的偶函數(shù),對于任意,都有成立,當(dāng)時,有給出下列命題:

;

②函數(shù)的周期是6;

③函數(shù)上為增函數(shù);

④函數(shù)上有四個零點(diǎn).

其中所有正確命題的序號為_______________.(把所有正確命題的序號都填上)

【答案】①②④

【解析】

根據(jù)所給條件,結(jié)合周期函數(shù)定義,增函數(shù)定義,求出函數(shù)的零點(diǎn),逐項(xiàng)判斷,即可求得答案.

對于①,對于任意,都有成立,

,則,

上的偶函數(shù),

故①是正確命題

對于②,由①,代入

可得:

函數(shù)的周期是

故②是正確命題

對于③,當(dāng),且時,

變形可得

函數(shù)上為增函數(shù),

上的偶函數(shù),

函數(shù)上為減函數(shù)

的周期為

函數(shù)上為減函數(shù).

故③是錯誤命題

對于④,,f(x)的周期為

,

故函數(shù)上有四個零點(diǎn).

故④是正確命題

故答案為:①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,已知,.

(1)求證:;

(2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域?yàn)镈的函數(shù)y=fx,如果存在區(qū)間[m,n]D,同時滿足:

①fx[m,n]內(nèi)是單調(diào)函數(shù);

②當(dāng)定義域是[m,n]時,fx的值域也是[m,n].則稱[m,n]是該函數(shù)的“和諧區(qū)間”.

1證明:[0,1]是函數(shù)y=fx=x2的一個“和諧區(qū)間”.

2求證:函數(shù)不存在“和諧區(qū)間”.

3已知:函數(shù)aR,a0有“和諧區(qū)間”[m,n],當(dāng)a變化時,求出n﹣m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(10分)若集合A={x|x2+5x﹣6=0},B={x|x2+2(m+1)x+m2﹣3=0}.

(1)若m=0,寫出A∪B的子集;

(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),其中,為坐標(biāo)原點(diǎn)

(1),求的面積;

(2)在軸上是否存在定點(diǎn),使得直線的斜率互為相反數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)x,

1)判斷的奇偶性,并用定義證明;

2)若不等式上恒成立,試求實(shí)數(shù)a的取值范圍;

3的值域?yàn)?/span>函數(shù)上的最大值為M,最小值為m,若成立,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖給出的是2000年至2016年我國實(shí)際利用外資情況,以下結(jié)論正確的是( )

A. 2000年以來我國實(shí)際利用外資規(guī)模與年份呈負(fù)相關(guān)

B. 2010年以來我國實(shí)際利用外資規(guī)模逐年增大

C. 2008年以來我國實(shí)際利用外資同比增速最大

D. 2010年以來我國實(shí)際利用外資同比增速最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南充高中扎實(shí)推進(jìn)陽光體育運(yùn)動,積極引導(dǎo)學(xué)生走向操場,走進(jìn)大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時長35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時間,采用簡單隨機(jī)抽樣法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進(jìn)行調(diào)查,按平均每日體育鍛煉時間分組統(tǒng)計(jì)如下表:

分組

男生人數(shù)

2

16

19

18

5

3

女生人數(shù)

3

20

10

2

1

1

若將平均每日參加體育鍛煉的時間不低于120分鐘的學(xué)生稱為鍛煉達(dá)人”.

1)將頻率視為概率,估計(jì)我校7000名學(xué)生中鍛煉達(dá)人有多少?

2)從這100名學(xué)生的鍛煉達(dá)人中按性別分層抽取5人參加某項(xiàng)體育活動.

①求男生和女生各抽取了多少人;

②若從這5人中隨機(jī)抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知首項(xiàng)相等的兩個數(shù)列滿足.

1)求證:數(shù)列是等差數(shù)列;

2)若,求的前n項(xiàng)和;

3)在(2)的條件下,數(shù)列是否存在不同的三項(xiàng)構(gòu)成等比數(shù)列?如果存在,請你求出所有符合題意的項(xiàng);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案