【題目】在平面直角坐標系xoy中,橫、縱坐標均為整數(shù)的點叫做格點,若函數(shù)的圖象恰好經過個格點,則稱函數(shù)為階格點函數(shù).下列函數(shù)中為一階格點函數(shù)的是( )
A.B.C.D.
【答案】A
【解析】
根據題意得,我們逐個分析四個選項中函數(shù)的格點個數(shù),即可得到答案.
根據題意得:函數(shù)y=sinx圖象上只有(0,0)點橫、縱坐標均為整數(shù),故A為一階格點函數(shù);
函數(shù)沒有橫、縱坐標均為整數(shù),故B為零階格點函數(shù);
函數(shù)y=lgx的圖象有(1,0),(10,1),(100,2),…無數(shù)個點橫、縱坐標均為整數(shù),故C為無窮階格點函數(shù);
函數(shù)y=x2的圖象有…(﹣1,0),(0,0),(1,1),…無數(shù)個點橫、縱坐標均為整數(shù),故D為無窮階格點函數(shù).
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某小區(qū)中央廣場由兩部分組成,一部分是邊長為的正方形,另一部分是以為直徑的半圓,其圓心為.規(guī)劃修建的條直道, , 將廣場分割為個區(qū)域:Ⅰ、Ⅲ、Ⅴ為綠化區(qū)域(圖中陰影部分),Ⅱ、Ⅳ、Ⅵ為休閑區(qū)域,其中點在半圓弧上, 分別與, 相交于點, .(道路寬度忽略不計)
(1)若經過圓心,求點到的距離;
(2)設, .
①試用表示的長度;
②當為何值時,綠化區(qū)域面積之和最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:經過點(,),且兩個焦點,的坐標依次為(1,0)和(1,0).
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設,是橢圓上的兩個動點,為坐標原點,直線的斜率為,直線的斜率為,求當為何值時,直線與以原點為圓心的定圓相切,并寫出此定圓的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四位同學參加比賽,只有其中三位獲獎.甲說:“乙或丙未獲獎”;乙說:“甲、丙都獲獎”;丙說:“我未獲獎”;丁說:“乙獲獎”.四位同學的話恰有兩句是對的,則( )
A. 甲和乙不可能同時獲獎 B. 丙和丁不可能同時獲獎
C. 乙和丁不可能同時獲獎 D. 丁和甲不可能同時獲獎
【答案】C
【解析】若甲乙丙同時獲獎,則甲丙的話錯,乙丁的話對;符合題意;
若甲乙丁同時獲獎,則乙的話錯,甲丙丁的話對;不合題意;
若甲丙丁同時獲獎,則丙丁的話錯,甲乙的話對;符合題意;;
若丙乙丁同時獲獎,則甲乙丙的話錯,丁的話對;不合題意;
因此乙和丁不可能同時獲獎,選C.
【題型】單選題
【結束】
12
【題目】已知當時,關于的方程有唯一實數(shù)解,則值所在的范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為研究學生的身體素質與與課外體育鍛煉時間的關系,對該校200名高三學生的課外體育鍛煉平均每天運動的時間進行調查,如下表:(平均每天鍛煉的時間單位:分鐘)
將學生日均課外體育運動時間在上的學生評價為“課外體育達標”.
平均每天鍛煉的時間(分鐘) | ||||||
總人數(shù) | 20 | 36 | 44 | 50 | 40 | 10 |
請根據上述表格中的統(tǒng)計數(shù)據填寫下面列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過的前提下認為“課外體育達標”與性別有關?
課外體育不達標 | 課外體育達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
從上述200名學生中,按“課外體育達標”、“課外體育不達標”分層抽樣,抽取4人得到一個樣本,再從這個樣本中抽取2人,求恰好抽到一名“課外體育不達標”學生的概率.
參考公式:,其中.
參考數(shù)據:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)求圓心在直線上,且與直線相切于點的圓的方程;
(2)求與圓外切于點且半徑為的圓的方程.
【答案】(1);(2).
【解析】試題分析:
(1)由題意可得圓的一條直徑所在的直線方程為,據此可得圓心,半徑,則所求圓的方程為.
(2)圓的標準方程為,得該圓圓心為,半徑為,兩圓連心線斜率.設所求圓心為,結合弦長公式可得,.則圓的方程為.
試題解析:
(1)過點且與直線垂直的直線為,
由 .
即圓心,半徑,
所求圓的方程為.
(2)圓方程化為,得該圓圓心為,半徑為,故兩圓連心線斜率.設所求圓心為,
,∴,
,∴.
∴.
點睛:求圓的方程,主要有兩種方法:
(1)幾何法:具體過程中要用到初中有關圓的一些常用性質和定理.如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線.
(2)待定系數(shù)法:根據條件設出圓的方程,再由題目給出的條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應該有三個獨立等式.
【題型】解答題
【結束】
20
【題目】如圖所示,平面,點在以為直徑的上,,,點為線段的中點,點在弧上,且.
(1)求證:平面平面;
(2)求證:平面平面;
(3)設二面角的大小為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空氣質量主要受污染物排放量及大氣擴散等因素的影響,某市環(huán)保監(jiān)測站2014年10月連續(xù)10天(從左到右對應1號至10號)采集該市某地平均風速及空氣中氧化物的日均濃度數(shù)據,制成散點圖如圖所示.
(Ⅰ)同學甲從這10天中隨機抽取連續(xù)5天的一組數(shù)據,計算回歸直線方程.試求連續(xù)5天的一組數(shù)據中恰好同時包含氧化物日均濃度最大與最小值的概率;
(Ⅱ)現(xiàn)有30名學生,每人任取5天數(shù)據,對應計算出30個不同的回歸直線方程.已知30組數(shù)據中有包含氧化物日均濃度最值的有14組.現(xiàn)采用這30個回歸方程對某一天平均風速下的氧化物日均濃度進行預測,若預測值與實測值差的絕對值小于2,則稱之為“擬合效果好”,否則為“擬合效果不好”.根據以上信息完成下列2×2聯(lián)表,并分析是否有95%以上的把握說擬合效果與選取數(shù)據是否包含氧化物日均濃度最值有關.
預測效果好 | 擬合效果不好 | 合計 | |
數(shù)據有包含最值 | 5 | ||
數(shù)據無包含最值 | 4 | ||
合計 |
參考數(shù)據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com