【題目】如圖1,在高為2的梯形中, , , ,過、分別作, ,垂足分別為、。已知,將梯形沿、同側(cè)折起,得空間幾何體,如圖2。
(1)若,證明: ;
(2)若,證明: ;
(3)在(1),(2)的條件下,求三棱錐的體積。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a=(1,2),b=(-2,n),a與b的夾角是45°.
(1) 求b;
(2) 若c與b同向,且a與c-a垂直,求向量c的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組檢測數(shù)據(jù)(…)如下表所示:
試銷價格 (元) | 4 | 5 | 6 | 7 | 9 | |
產(chǎn)品銷量 (件) | 84 | 83 | 80 | 75 | 68 |
已知變量具有線性負(fù)相關(guān)關(guān)系,且,,現(xiàn)有甲、乙、丙三位同學(xué)通過計算求得其回歸直線方程分別為:甲,乙,丙,其中有且僅有一位同學(xué)的計算結(jié)果是正確的( ).
(1)試判斷誰的計算結(jié)果正確?并求出的值;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過1,則該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機抽取2個,為“理想數(shù)據(jù)”的個數(shù),求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一圓經(jīng)過點,,且它的圓心在直線上.
(I)求此圓的方程;
(II)若點為所求圓上任意一點,且點,求線段的中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,則下列說法不正確的是( )
A.若點在直線上運動時,三棱錐的體積不變
B.若點是平面上到點和距離相等的點,則點的軌跡是過點的直線
C.若點在直線上運動時,直線與平面所成角的大小不變
D.若點在直線上運動時,二面角的大小不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若四面體的三組對棱分別相等,即
給出下列結(jié)論:
①四面體每個面的面積相等;
②從四面體每個頂點出發(fā)的三條棱兩兩夾角之和大于 而小于 ;
③連結(jié)四面體每組對棱中點的線段相互垂直平分;
④從四面體每個頂點出發(fā)的三條棱的長可作為一個三角形的三邊長;
其中正確結(jié)論的序號是__________。(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售某種品牌的空調(diào)器,每周周初購進(jìn)一定數(shù)量的空調(diào)器,商場沒銷售一臺空調(diào)器可獲利500元,若供大于求,則每臺多余的空調(diào)器需交保管費100元;若供不應(yīng)求,則可從其他商店調(diào)劑供應(yīng),此時每臺空調(diào)器僅獲利潤200元.
(Ⅰ)若該商場周初購進(jìn)20臺空調(diào)器,求當(dāng)周的利潤(單位:元)關(guān)于當(dāng)周需求量(單位:臺,)的函數(shù)解析式;
(Ⅱ)該商場記錄了去年夏天(共10周)空調(diào)器需求量(單位:臺),整理得下表:
以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進(jìn)20臺空調(diào)器,表示當(dāng)周的利潤(單位:元),求的分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線:與雙曲線:(,)有公共焦點,點是曲線,在在第一象限的交點,且.
(1)求雙曲線的方程;
(2)以為圓心的圓與雙曲線的一條漸進(jìn)線相切,圓.已知點,過點作互相垂直分別與圓、圓相交的直線和,設(shè)被圓解得的弦長為,被圓截得的弦長為.試探索是否為定值?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4,M,N分別為AB,AC的中點,沿MN將△AMN折起,使點A到A′的位置.若平面A′MN與平面MNCB垂直,則四棱錐A′MNCB的體積為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com