在實(shí)數(shù)集R上定義運(yùn)算:
(Ⅰ)求的解析式;
(Ⅱ)若在R上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)若,在的曲線上是否存在兩點(diǎn),使得過(guò)這兩點(diǎn)的切線互相垂直?若存在,求出切線方程;若不存在,說(shuō)明理由.
(I)(II).
(III)的曲線上不存的兩點(diǎn),使得過(guò)這兩點(diǎn)的切線點(diǎn)互相垂直.
解析試題分析:(I)由新定義計(jì)算即得,關(guān)鍵是理解“新運(yùn)算”的意義;
(II)根據(jù)時(shí),在減函數(shù),得到對(duì)于恒成立,
即恒成立,得到.
屬于常規(guī)題目,難度不大,主要是注意應(yīng)用“轉(zhuǎn)化與化歸思想” .
(III)假定是曲線上的任意兩點(diǎn),如果存在互相垂直的切線,則有
.因此,只需研究是否成立即可.
試題解析:(I)由題意, 2分
4分
(II)∵, 6分
當(dāng)時(shí),在減函數(shù),
∴對(duì)于恒成立,即
恒成立, 8分
∵,
∴恒成立,
∴,
∴. 9分
(III)當(dāng)時(shí),,
設(shè)是曲線上的任意兩點(diǎn),
∵, 11分
∴,
∴不成立. 12分
∴的曲線上不存的兩點(diǎn),使得過(guò)這兩點(diǎn)的切線點(diǎn)互相垂直. 13分
考點(diǎn):新定義,導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知P()為函數(shù)圖像上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線OP的斜率。
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),求函數(shù)的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),若時(shí),有極小值,
(1)求實(shí)數(shù)的取值;
(2)若數(shù)列中,,求證:數(shù)列的前項(xiàng)和;
(3)設(shè)函數(shù),若有極值且極值為,則與是否具有確定的大小關(guān)系?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(Ⅰ)若曲線在與處的切線相互平行,求的值及切線斜率;
(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍;
(Ⅲ)設(shè)函數(shù)的圖像C1與函數(shù)的圖像C2交于P、Q兩點(diǎn),過(guò)線段PQ的中點(diǎn)作x軸的垂線分別交C1、C2于點(diǎn)M、N,證明:C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不可能平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù), e=2.718…,且函數(shù)y=f(x)和y=g(x)的圖像在它們與坐標(biāo)軸交點(diǎn)處的切線互相平行.
(1)求常數(shù)a的值;
(2)若存在x使不等式>成立,求實(shí)數(shù)m的取值范圍;
(3)對(duì)于函數(shù)y=f(x)和y=g(x)公共定義域內(nèi)的任意實(shí)數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中實(shí)數(shù)a為常數(shù).
(I)當(dāng)a=-l時(shí),確定的單調(diào)區(qū)間:
(II)若f(x)在區(qū)間(e為自然對(duì)數(shù)的底數(shù))上的最大值為-3,求a的值;
(Ⅲ)當(dāng)a=-1時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)若,求函數(shù)的極值,并指出是極大值還是極小值;
(Ⅱ)若,求證:在區(qū)間上,函數(shù)的圖像在函數(shù)的圖像的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)研究函數(shù)的極值點(diǎn);
(2)當(dāng)時(shí),若對(duì)任意的,恒有,求的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)。
(1)求函數(shù)在上的最小值;
(2)對(duì)一切,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com