【題目】已知點(diǎn)(1, )是函數(shù)f(x)= ax(a>0,a≠1)圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為c﹣f(n).?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為2c,前n項(xiàng)和滿足 = +1(n≥2). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{ }的前n項(xiàng)和為T(mén)n , 問(wèn)使Tn> 的最小正整數(shù)n是多少?
【答案】(Ⅰ)解: .∴ , ∵ ,則等比數(shù)列{an}的前n項(xiàng)和為c﹣
,a2=(c﹣ )﹣(c﹣ )= ,
由{an}為等比數(shù)列,得公比q=
∴ ,則c= ,a
∴
(Ⅱ):由b1=2c=1,得s1=1
n≥2時(shí), ,則 是首項(xiàng)為1,公差為1的等差數(shù)列.
∴ , (n∈N+)
則 (n≥2)bn=2n﹣1,(n≥2).
當(dāng)n=1時(shí),b1=1滿足上式
∴
∵ = =
∴Tn= = =
由Tn= ,得n ,則最小正整數(shù)n為59
【解析】(Ⅰ)由已知求得a, ,a2=(c﹣ )﹣(c﹣ )= , ,得公比q= ,即可寫(xiě)出通項(xiàng);(Ⅱ)可得 是首項(xiàng)為1,公差為1的等差數(shù)列.由 (n≥2)bn=2n﹣1,(n≥2). = = ,累加求得Tn= ,得n ,即可得最小正整數(shù)n.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是一個(gè)等差數(shù)列且a2+a8=﹣4,a6=2
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中, ⊥平面, , , , 分別為的中點(diǎn).(19)
(I)求到平面的距離;
(II)在線段上是否存在一點(diǎn),使得平面∥平面,若存在,試確定的位置,并證明此點(diǎn)滿足要求;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1 , a14=b4 . (Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+1)= ,且f(x)在[﹣3,﹣2]上是減函數(shù),若α,β是銳角三角形的兩個(gè)內(nèi)角,則( )
A.f(sinα)>f(sinβ)
B.f(cosα)>f(cosβ)
C.f(sinα)>f(cosβ)
D.f(sinα)<f(cosβ)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓C: =1(a>b>0)的離心率為 ,以橢圓C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
(1)求橢圓C的方程;
(2)求 的最小值;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:|OR||OS|是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察以下三個(gè)等式: sin215°﹣sin245°+sin15°cos45°=﹣ ,
sin220°﹣sin250°+sin20°cos50°=﹣ ,
sin230°﹣sin260°+sin30°cos60°=﹣ ;
猜想出一個(gè)反映一般規(guī)律的等式: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com