【題目】已知△ABC的邊長為2的等邊三角形,動點(diǎn)P滿足 ,則 的取值范圍是

【答案】[﹣ ,0]
【解析】解:如圖所示,
△ABC中,設(shè)BC的中點(diǎn)為O,則 =2 ,
= sin2θ +cos2θ =sin2θ +cos2θ
=(1﹣cos2θ) +cos2θ
= +cos2θ( ),
=cos2θ( ),
可得 =cos2θ
又∵cos2θ∈[0,1],∴P在線段OA上,
由于BC邊上的中線OA=2×sin60°= ,
因此( + =2 ,
設(shè)| |=t,t∈[0, ],
可得( + =﹣2t( ﹣t)=2t2﹣2 t=2(t﹣ 2
∴當(dāng)t= 時(shí),( + 取得最小值為﹣ ;
當(dāng)t=0或 時(shí),( + 取得最大值為0;
的取值范圍是[﹣ ,0].
所以答案是:[﹣ ,0].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識,鄭州市面向全市征召義務(wù)宣傳志愿者. 從符合條件的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是: .

(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在歲的人數(shù);

(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人. 記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(1, )是函數(shù)f(x)= ax(a>0,a≠1)圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為c﹣f(n).?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為2c,前n項(xiàng)和滿足 = +1(n≥2). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{ }的前n項(xiàng)和為Tn , 問使Tn 的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≤x﹣2}.
(1)求A∩(UB);
(2)若函數(shù)f(x)=lg(2x+a)的定義域?yàn)榧螩,滿足AC,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 (n∈N*)的展開式中第五項(xiàng)的系數(shù)與第三項(xiàng)的系數(shù)的比是10:1.
(1)求在展開式中含x 的項(xiàng);
(2)求展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行購物抽獎(jiǎng)活動,抽獎(jiǎng)箱中放有除編號不同外,其余均相同的20個(gè)小球,這20個(gè)小球編號的莖葉圖如圖所示,活動規(guī)則如下:從抽獎(jiǎng)箱中隨機(jī)抽取一球,若抽取的小球編號是十位數(shù)字為l的奇數(shù),則為一等獎(jiǎng),獎(jiǎng)金100元;若抽取的小球編號是十位數(shù)字為2的奇數(shù),則為二等獎(jiǎng),獎(jiǎng)金50元;若抽取的小球是其余編號則不中獎(jiǎng).現(xiàn)某顧客有放回的抽獎(jiǎng)兩次,兩次抽獎(jiǎng)相互獨(dú)立. (I)求該顧客在兩次抽獎(jiǎng)中恰有一次中獎(jiǎng)的概率;
(Ⅱ)記該顧客兩次抽獎(jiǎng)后的獎(jiǎng)金之和為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組檢測數(shù)據(jù),如下表所示:

已知變量具有線性負(fù)相關(guān)關(guān)系,且, ,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得其回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.

(1)試判斷誰的計(jì)算結(jié)果正確?并求出的值;

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過1,則該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機(jī)抽取2個(gè),求這兩個(gè)檢測數(shù)據(jù)均為“理想數(shù)據(jù)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是y=f(x)的導(dǎo)函數(shù)的圖象,現(xiàn)有四種說法: 1)f(x)在(﹣2,1)上是增函數(shù);
2)x=﹣1是f(x)的極小值點(diǎn);
3)f(x)在(﹣1,2)上是增函數(shù);
4)x=2是f(x)的極小值點(diǎn);
以上說法正確的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=x2﹣(2a+1)x+alnx (Ⅰ) 當(dāng)a=1時(shí),求函數(shù)g(x)的單調(diào)增區(qū)間;
(Ⅱ) 求函數(shù)g(x)在區(qū)間[1,e]上的最小值;
(Ⅲ) 在(Ⅰ)的條件下,設(shè)f(x)=g(x)+4x﹣x2﹣2lnx,
證明: (n≥2).(參考數(shù)據(jù):ln2≈0.6931)

查看答案和解析>>

同步練習(xí)冊答案