【題目】函數(shù)對任意的都有,且時(shí)的最大值為,下列四個(gè)結(jié)論:①的一個(gè)極值點(diǎn);②若為奇函數(shù),則的最小正周期;③若為偶函數(shù),則上單調(diào)遞增;④的取值范圍是.其中一定正確的結(jié)論編號是(

A.①②B.①③C.①②④D.②③④

【答案】A

【解析】

①根據(jù),得到是函數(shù)的一條對稱軸,且時(shí)的最大值為判斷;②由為奇函數(shù),則,得到,再根據(jù)時(shí)的最大值為判斷;③由為偶函數(shù),則,得到,再根據(jù)時(shí)的最大值為判斷;④由②知的最小正周期,則判斷.

因?yàn)?/span>,

所以是函數(shù)的一條對稱軸,

又因?yàn)?/span>時(shí)的最大值為,

所以是函數(shù)的一條對稱軸,故①正確;

為奇函數(shù),則,所以,

又因?yàn)?/span>時(shí)的最大值為,

所以,

所以,故②正確;

為偶函數(shù),則,所以,

又因?yàn)?/span>時(shí)的最大值為,所以上單調(diào)遞增或遞減,故③錯(cuò)誤;

由②知的最小正周期,則,所以的取值范圍是,故④錯(cuò)誤.

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下三個(gè)條件:

①數(shù)列是首項(xiàng)為 2,滿足的數(shù)列;

②數(shù)列是首項(xiàng)為2,滿足λR)的數(shù)列;

③數(shù)列是首項(xiàng)為2,滿足的數(shù)列..

請從這三個(gè)條件中任選一個(gè)將下面的題目補(bǔ)充完整,并求解.

設(shè)數(shù)列的前n項(xiàng)和為,滿足______,記數(shù)列,,求數(shù)列{}的前n項(xiàng)和;

(注:如選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某央企在一個(gè)社區(qū)隨機(jī)采訪男性和女性用戶各50名,統(tǒng)計(jì)他(她)們一天()使用手機(jī)的時(shí)間,其中每天使用手機(jī)超過6小時(shí)(含6小時(shí))的用戶稱為手機(jī)迷,否則稱其為非手機(jī)迷,調(diào)查結(jié)果如下:

男性用戶的頻數(shù)分布表

男性用戶日用時(shí)間分組(

頻數(shù)

20

12

8

6

4

女性用戶的頻數(shù)分布表

女性用戶日用時(shí)間分組(

頻數(shù)

25

10

6

8

1

1)分別估計(jì)男性用戶,女性用戶手機(jī)迷的頻率;

2)求男性用戶每天使用手機(jī)所花時(shí)間的中位數(shù);

3)求女性用戶每天使用手機(jī)所花時(shí)間的平均數(shù)與標(biāo)準(zhǔn)差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,把上各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到函數(shù)的圖象,關(guān)于有下述四個(gè)結(jié)論:

1)函數(shù)上是減函數(shù);

2)方程內(nèi)有2個(gè)根;

3)函數(shù)(其中)的最小值為

4)當(dāng),且時(shí),,則.

其中正確結(jié)論的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示多面體的底面是菱形,平面,平面.

I)求證:平面;

II)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)k為常數(shù),).

1)在下列條件中選擇一個(gè)________使數(shù)列是等比數(shù)列,說明理由;

①數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列;

②數(shù)列是首項(xiàng)為4,公差為2的等差數(shù)列;

③數(shù)列是首項(xiàng)為2,公差為2的等差數(shù)列的前n項(xiàng)和構(gòu)成的數(shù)列.

2)在(1)的條件下,當(dāng)時(shí),設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廣元市某校高三數(shù)學(xué)備課組為了更好地制定二輪復(fù)習(xí)的計(jì)劃,開展了試卷講評后效果的調(diào)研,從上學(xué)期市一診考試數(shù)學(xué)試題中選出一些學(xué)生易錯(cuò)題,重新進(jìn)行測試,并認(rèn)為做這些題不出任何錯(cuò)誤的同學(xué)為“過關(guān)”,出了錯(cuò)誤的同學(xué)為“不過關(guān)”,現(xiàn)隨機(jī)抽查了年級人,他們的測試成績的頻數(shù)分布如下表:

市一診分?jǐn)?shù)段

人數(shù)

5

10

15

13

7

“過關(guān)”人數(shù)

1

3

8

8

6

1)由以上統(tǒng)計(jì)數(shù)據(jù)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為市一診數(shù)學(xué)成績不低于分與測試“過關(guān)”有關(guān)?說明你的理由;

分?jǐn)?shù)低于分人數(shù)

分?jǐn)?shù)不低于分人數(shù)

合計(jì)

“過關(guān)”人數(shù)

“不過關(guān)”人數(shù)

合計(jì)

2)根據(jù)以上數(shù)據(jù)估計(jì)該校市一診考試數(shù)學(xué)成績的中位數(shù).下面的臨界值表供參考:

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系.xOy中,曲線C1的參數(shù)方程為 為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.

1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;

2)已知曲線C2的極坐標(biāo)方程為,點(diǎn)A是曲線C3C1的交點(diǎn),點(diǎn)B是曲線C3C2的交點(diǎn),且A,B均異于原點(diǎn)O,且|AB|=4,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某工廠的一個(gè)車間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:cm)落在各個(gè)小組的頻數(shù)分布如下表:

數(shù)據(jù)分組

[12.5,15.5

[15.5,18.5

[18.521.5

[21.5,24.5

[24.527.5

[27.5,30.5

[30.5,33.5

頻數(shù)

3

8

9

12

10

5

3

1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在[27.533.5]內(nèi)的概率;

2)求這50件產(chǎn)品尺寸的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

3)根據(jù)頻數(shù)分布對應(yīng)的直方圖,可以認(rèn)為這種產(chǎn)品尺寸服從正態(tài)分布,其中近似為樣本平均值近似為樣本方差,經(jīng)計(jì)算得.利用該正態(tài)分布,求.

附:(1)若隨機(jī)變量服從正態(tài)分布,則;(2.

查看答案和解析>>

同步練習(xí)冊答案