【題目】已知函數(shù),,其中為常數(shù),是自然對(duì)數(shù)的底數(shù).

(1)設(shè),若函數(shù)在區(qū)間上有極值點(diǎn),求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),恒成立.

【答案】(1);(2)證明見解析.

【解析】試題分析:(1),則,上有極值點(diǎn),則上有變號(hào)零點(diǎn),設(shè)研究單調(diào)性使得函數(shù)和x軸有兩個(gè)交點(diǎn)即可;(2)要證成立,,

分別求得左式的最大值和右式的最小值,證得最大值小于最小值即可.

解析:

(1)由題意,,則

由題意,若上有極值點(diǎn),

上有變號(hào)零點(diǎn).

,即,

設(shè),,

,

,,,

,,

,

.

故若函數(shù)上有極值點(diǎn),

只需

所以的取值范圍為.

(2)由題意,知要證成立.

設(shè),,

,

當(dāng)時(shí),,

當(dāng)時(shí),,

所以當(dāng)時(shí),取得最大值.

所以.

設(shè),

,

因?yàn)?/span>,則,

在區(qū)間內(nèi)單調(diào)遞增,

,即.

所以,

.

綜上,當(dāng)時(shí),.

命題得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐的底面是等邊三角形,點(diǎn)在平面上的射影在內(nèi)(不包括邊界),.,與底面所成角為;二面角的平面角為,,則,,,之間的大小關(guān)系等確定的是()

A. B.

C. 是最小角,是最大角D. 只能確定,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點(diǎn), 求實(shí)數(shù)的取值范圍;

(Ⅱ) 證明: 當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市場(chǎng)份額又稱市場(chǎng)占有率,它在很大程度上反映了企業(yè)的競(jìng)爭(zhēng)地位和盈利能力,是企業(yè)非常重視的一個(gè)指標(biāo).近年來(lái),服務(wù)機(jī)器人與工業(yè)機(jī)器人以迅猛的增速占領(lǐng)了中國(guó)機(jī)器人領(lǐng)域龐大的市場(chǎng)份額,隨著“一帶一路”的積極推動(dòng),包括機(jī)器人產(chǎn)業(yè)在內(nèi)的眾多行業(yè)得到了更廣闊的的發(fā)展空間,某市場(chǎng)研究人員為了了解某機(jī)器人制造企業(yè)的經(jīng)營(yíng)狀況,對(duì)該機(jī)器人制造企業(yè)2017年1月至6月的市場(chǎng)份額進(jìn)行了調(diào)查,得到如下資料:

月份

1

2

3

4

5

6

市場(chǎng)份額

11

163

16

15

20

21

請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并預(yù)測(cè)該企業(yè)2017年7月份的市場(chǎng)份額.

如圖是該機(jī)器人制造企業(yè)記錄的2017年6月1日至6月30日之間的產(chǎn)品銷售頻數(shù)(單位:天)統(tǒng)計(jì)圖.設(shè)銷售產(chǎn)品數(shù)量為,經(jīng)統(tǒng)計(jì),當(dāng)時(shí),企業(yè)每天虧損約為200萬(wàn)元;

當(dāng)時(shí),企業(yè)平均每天收入約為400萬(wàn)元;

當(dāng)時(shí),企業(yè)平均每天收入約為700萬(wàn)元.

①設(shè)該企業(yè)在六月份每天收入為,求的數(shù)學(xué)期望;

②如果將頻率視為概率,求該企業(yè)在未來(lái)連續(xù)三天總收入不低于1200萬(wàn)元的概率.

附:回歸直線的方程是,其中

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知焦點(diǎn)為的的拋物線)與圓心在坐標(biāo)原點(diǎn),半徑為交于,兩點(diǎn),且,,其中,均為正實(shí)數(shù).

(1)求拋物線的方程;

(2)設(shè)點(diǎn)為劣弧上任意一點(diǎn),過(guò)的切線交拋物線,兩點(diǎn),過(guò),的直線,均于拋物線相切,且兩直線交于點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),在集合的所有元素個(gè)數(shù)為2的子集中,把每個(gè)子集的較大元素相加和記為a,較小元素之和記為b.

(1)當(dāng)n=3時(shí),a, b的值;

(2)當(dāng)n=4時(shí),求集合的所有3個(gè)元素子集中所有元素之和;

(3)對(duì)任意的,是否為定值?若是定值,請(qǐng)給出證明并求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量X服從正態(tài)分布Nμ,σ2),且PμXμ)=0.954 4,PμσXμσ)=0.682 6.μ4,σ1,則P5X6)=( )

A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對(duì)任意的實(shí)數(shù)都有是自然對(duì)數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個(gè)整數(shù),則實(shí)數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,側(cè)面底面ABCD,底面ABCD為直角梯形,,,,E,F分別為AD,PC的中點(diǎn).

求證:平面BEF;

,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案