【題目】某城市100戶居民的月平均用電量(單位:度)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如下圖示.

(Ⅰ)求直方圖中x的值;

(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);

(Ⅲ)在月平均用電量為[220,240),[240,260),[260,280)的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在[220,240)的用戶中應抽取多少戶?

【答案】(Ⅰ)0.0075;(Ⅱ),224;(Ⅲ)5(戶).

【解析】試題分析:

(1)利用頻率分布直方圖小長方形的面積之和為1可得x=0.0075;

(2)結合所給的數(shù)據(jù)可得:月平均用電量的眾數(shù)和中位數(shù)為,224;

(3)結合頻率分布直方圖和分層抽樣的概念可得月平均用電量在[220,240)的用戶中應抽取5戶.

試題解析:

(Ⅰ)由直方圖的性質,可得

(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1

得:x=0.0075,所以直方圖中x的值是0.0075.

(Ⅱ)月平均用電量的眾數(shù)是

因為(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用電量的中位數(shù)在[220,240)內,

設中位數(shù)為a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5,

解得:a=224,

所以月平均用電量的中位數(shù)是224.

(Ⅲ)月平均用電量為[220,240]的用戶有0.0125×20×100=25(戶),月平均用電量為[240,260)的用戶有0.0075×20×100=15(戶),月平均用電量為[260,280)的用戶有:

0.005×20×100=10(戶),

抽取比例,所以月平均用電量在[220,240)的用戶中應抽取(戶).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】實數(shù)滿足不等式函數(shù)無極值點

1為假命題,為真命題,求實數(shù)的取值范圍;

2已知為真命題,并記為,且,若的必要不充分條件,求正整數(shù)的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,點是棱的中點,,平面平面

(Ⅰ)求證://平面;

(Ⅱ)求證:平面;

(Ⅲ) 設,試判斷平面⊥平面能否成立;若成立,寫出的一個值(只需寫出結論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)在區(qū)間上, , , , 均可為一個三角形的三邊長,則稱函數(shù)三角形函數(shù).已知函數(shù)在區(qū)間上是三角形函數(shù),則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC的三內角A,B,C的對邊分別是a,b,c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0.

(Ⅰ)求角A的大小;

(Ⅱ)若,,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線過點

(1)求圓的圓心坐標和半徑;

(2)若直線與圓相切,求直線的方程;

(3)若直線與圓相交于P,Q兩點,求三角形CPQ的面積的最大值,并求此時

直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設某設備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

試求:(1)y與x之間的回歸方程;

(2)當使用年限為10年時,估計維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學有一調查小組為了解本校學生假期中白天在家時間的情況,從全校學生中抽取人,統(tǒng)計他們平均每天在家的時間在家時間在小時以上的就認為具有屬性,否則就認為不具有屬性

具有屬性

不具有屬性

總計

男生

20

50

70

女生

10

40

50

總計

30

90

120

1請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷能否在犯錯誤的概率不超過

的前提下認為是否具有屬性與性別有關?

2采用分層抽樣的方法從具有屬性的學生里抽取一個人的樣本,其中男生和女生各多少人?

人中隨機選取人做進一步的調查,求選取的人至少有名女生的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

5.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐,底面,底面是直角梯形,,,,的中點

(1)求證:平面平面;

(2)若二面角的余弦值為,求直線與平面所成角的正弦值

查看答案和解析>>

同步練習冊答案