【題目】設(shè)銳角△ABC的外接圓上的任意一點(diǎn)P所對應(yīng)的西姆松線為,P的對徑點(diǎn)為,與的交點(diǎn)為。證明:對上兩點(diǎn)P、Q,當(dāng)且僅當(dāng)時(shí),關(guān)于點(diǎn)N對稱,其中,N為△ABC的九點(diǎn)圓的圓心。
【答案】見解析
【解析】
先證明下面的引理.
引理1 △ABC的任兩條西姆松線不平行,
證明 否則,設(shè)分別與直線AB、AC交于點(diǎn).
由與位似知其外接圓位似,位似中心為A.故三點(diǎn)共線,這與點(diǎn)都在上矛盾.
引理2當(dāng)且僅當(dāng)為的對徑點(diǎn)時(shí),,且的交點(diǎn)在九點(diǎn)圓上
證明 充分性.
設(shè)是上的對徑點(diǎn),對應(yīng)的西姆松線分別為,其中,分別為,在上的射影.
易知,點(diǎn)在以為直徑的圓上,且.
故圓內(nèi)接四邊形與圓內(nèi)接四邊形相似,且與交于點(diǎn)分別是的中點(diǎn)不妨設(shè)與凸四邊形內(nèi)部不相交(如圖).
設(shè)PP2與所夾角為.
則.
易知分別為的中點(diǎn).
則,
故
從而,點(diǎn)K在的外接圓的弧上.
又,
,
其中,R為的半徑,也是的直徑,則.
必要性.
設(shè)與的交點(diǎn)為S、T(也許S=T,且由充分性的證明知,必與有交點(diǎn)).
過點(diǎn)S、T與垂直的直線各有一條,由充分性知其中必有一條為(設(shè)其過點(diǎn)S).
又由引理1知上述兩條直線至多有一條是西姆松線,故由,且的交點(diǎn)在上知Q=P',即P、Q為的對徑點(diǎn).
引理3對的兩條不同的直徑PP'、QQ',有P"≠Q(mào)".
證明 由引理2充分性的結(jié)論易證.
回到原題.
充分性.
對的直徑PP'、QQ',且PP'⊥QQ'.不妨設(shè)PP'不與凸四邊形內(nèi)部相交,且PP’與的夾角分別為.
由QQ'⊥PP',則QQ'與的夾角分別為.
不妨設(shè)QQ'不與凸四邊形內(nèi)部相交.則由引理2知,在上,有,
且,.
故為的對徑點(diǎn).
必要性.(同一法)
由充分性及引理3易證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于不同的兩點(diǎn)、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對n個(gè)互不相等的正整數(shù),其中任意六個(gè)數(shù)中都至少存在兩個(gè)數(shù),使得其中一個(gè)能整除另一個(gè).求n的最小值,使得在這n個(gè)數(shù)中一定存在六個(gè)數(shù),其中一個(gè)能被另外五個(gè)整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全體非負(fù)整數(shù)0,1,2,…,按其自然順序組成一個(gè)小數(shù) 456 789 101 112 131 415 161 718 19 ….問:是否為無理數(shù)?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程,從0,3,4,5,6,7,8,9,10這九個(gè)數(shù)中選出3個(gè)不同的數(shù),分別作圓心的橫坐標(biāo)、縱坐標(biāo)和圓的半徑.問:
(1)可以作多少個(gè)不同的圓?
(2)經(jīng)過原點(diǎn)的圓有多少個(gè)?
(3)圓心在直線上的圓有多少個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:平面AEC;
(2)設(shè)AP=1,AD=,三棱錐P-ABD的體積V=,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處切線的方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時(shí),恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com