【題目】如圖,已知拋物線C,過(guò)拋物線焦點(diǎn)F的直線交拋物線CA,B兩點(diǎn),P是拋物線外一點(diǎn),連接,分別交拋物線于點(diǎn)CD,且,設(shè),的中點(diǎn)分別為MN.

1)求證:軸;

2)若,求面積的最小值.

【答案】1)證明見(jiàn)解析(2

【解析】

1)設(shè)直線的方程為,聯(lián)立直線方程和拋物線方程,消去后利用韋達(dá)定理及中點(diǎn)坐標(biāo)公式即可求得,即可求得軸;

2)根據(jù)向量的坐標(biāo)運(yùn)算及點(diǎn)在拋物線上,即可求得,根據(jù)三角形的面積公式即可求得面積的最小值.

1)拋物線C的焦點(diǎn),設(shè),,,

直線的方程為,

,消去x,整理得

,,,因?yàn)?/span>,

所以,即,

,所以軸.

2)由(1)可知,,,則,

設(shè),由,,得,

代入拋物線,得到,

同理

所以,為方程,

,所以,

MN,P三點(diǎn)共線,

,所以,

,

所以

當(dāng),面積的最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓x軸負(fù)半軸交于,離心率.

1)求橢圓C的方程;

2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長(zhǎng)交直線x=4兩點(diǎn),若,直線MN是否恒過(guò)定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)設(shè)函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,焦點(diǎn)在軸上的橢圓與焦點(diǎn)在軸上的橢圓都過(guò)點(diǎn),中心都在坐標(biāo)原點(diǎn),且橢圓的離心率均為

求橢圓與橢圓的標(biāo)準(zhǔn)方程;

Ⅱ)過(guò)點(diǎn)M的互相垂直的兩直線分別與交于點(diǎn)A,B(點(diǎn)A、B不同于點(diǎn)M),當(dāng)的面積取最大值時(shí),求兩直線MA,MB斜率的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn),傾斜角為,以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為曲線.

)寫出直線的參數(shù)方程及曲線的普通方程;

)求直線和曲線的兩個(gè)交點(diǎn)到點(diǎn)的距離的和與積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有兩個(gè)調(diào)查抽樣:(1)某班為了了解班級(jí)學(xué)生在家表現(xiàn)情況決定從10名家長(zhǎng)中抽取3名參加座談會(huì);(2)某研究部門在高考后從2000名學(xué)生(其中文科400名,理科1600名)中抽取200名考生作為樣本調(diào)查數(shù)學(xué)學(xué)科得分情況.

給出三種抽樣方法:Ⅰ.簡(jiǎn)單隨機(jī)抽樣法;Ⅱ.系統(tǒng)抽樣法;Ⅲ.分層抽樣法.

則問(wèn)題(1)、(2)選擇的抽樣方法合理的是(

A.1)選,(2)選B.1)選,(2)選

C.1)選,(2)選D.1)選,(2)選

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接全國(guó)文明城市復(fù)檢,綿陽(yáng)某中學(xué)組織了本校1000名學(xué)生進(jìn)行社會(huì)主義核心價(jià)值觀、文明常識(shí)等內(nèi)容測(cè)試。統(tǒng)計(jì)測(cè)試成績(jī)數(shù)據(jù)得到如圖所示的頻率分布直方圖,已知,滿分100.

1)求測(cè)試分?jǐn)?shù)在的學(xué)生人數(shù);

2)求這1000名學(xué)生測(cè)試成績(jī)的平均數(shù)以及中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)P在曲線yx2上,從原點(diǎn)向A(2,4)移動(dòng),如果直線OP,曲線yx2及直線x=2所圍成的面積分別記為S1、S2.

(1)當(dāng)S1S2時(shí),求點(diǎn)P的坐標(biāo);

(2)當(dāng)S1S2有最小值時(shí),求點(diǎn)P的坐標(biāo)和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)國(guó)家號(hào)召,某校組織部分學(xué)生參與了垃圾分類,從我做起的知識(shí)問(wèn)卷作答,并將學(xué)生的作答結(jié)果分為合格不合格兩類與問(wèn)卷的結(jié)果有關(guān)?

不合格

合格

男生

14

16

女生

10

20

1)是否有90%以上的把握認(rèn)為性別問(wèn)卷的結(jié)果有關(guān)?

2)在成績(jī)合格的學(xué)生中,利用性別進(jìn)行分層抽樣,共選取9人進(jìn)行座談,再?gòu)倪@9人中隨機(jī)抽取5人發(fā)送獎(jiǎng)品,記拿到獎(jiǎng)品的男生人數(shù)為X,求X的分布列及數(shù)學(xué)期望

附:

0100

0050

0010

0001

2703

3841

6635

10828

查看答案和解析>>

同步練習(xí)冊(cè)答案