【題目】,曲線在點處的切線與直線垂直.

1)求的值;

(2)若對于任意的, 恒成立,求的取值范圍;

(3)求證:

【答案】)詳見解析

【解析】試題分析:)先求導數(shù),再根據(jù)導數(shù)幾何意義列方程,解方程可得的值;()不等式恒成立問題,一般轉(zhuǎn)化為對應函數(shù)最值問題,本題去分母轉(zhuǎn)化為差函數(shù): ,因為,所以最大值不小于,根據(jù)導函數(shù)符號可得才滿足條件.)不等式證明中涉及求和問題,一般方法為適當放縮,再利用裂項相消法給予證明.本題由()知,當, , 成立,所以放縮這一難點已暗示,下面只需令,即,最后疊加可得證.

試題解析:

由題設, .

, ,即

,即.

, ,這與題設矛盾

, 單調(diào)遞增, ,與題設矛盾.

, 單調(diào)遞減, ,即不等式成立

綜上所述, .

)由()知,當, , 成立.

不妨令所以

…………

累加可得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形均為直角梯形,平面平面,

(1)求證:平面

(2)求平面和平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為推行“新課堂”教學法,某化學老師分別用傳統(tǒng)教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班級進行教學實驗.為了比較教學效果,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,結果如下表:記成績不低于70分者為“成績優(yōu)良”.

分數(shù)

甲班頻數(shù)

5

6

4

4

1

一般頻數(shù)

1

3

6

5

5

(1)由以下統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的額概率不超過0.025的前提下認為“成績優(yōu)良與教學方式有關”?

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

附:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)現(xiàn)從上述40人中,學校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下的對應數(shù)據(jù):

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程=x+;

參考公式:用最小二乘法求線性回歸方程系數(shù)公式 ,.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+x的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x+1,x∈N*.x0,n∈N*,使f(x0)+f(x0+1)+f(x0n)=63成立,則稱(x0,n)為函數(shù)f(x)的一個“生成點”.則函數(shù)f(x)的“生成點”共有(  )

A.1B2C.3個 D4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知數(shù)列,,且直線

⑴求數(shù)列通項公式;

函數(shù),求函數(shù)最小值;

,表示數(shù)列和,問:是否存在關于的整,使得于一切小于2的自然數(shù)成立?若存在,寫出解析式,并加以證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分12已知橢圓C: 的離心率為,右焦點為(,0).(1)求橢圓C的方程;(2)若過原點作兩條互相垂直的射線,與橢圓交于A,B兩點,求證:點O到直線AB的距離為定值.

查看答案和解析>>

同步練習冊答案