7.如圖是某幾何體的三視圖,則該幾何體的表面積為( 。
A.80+16$\sqrt{2}$+16$\sqrt{3}$B.80+12$\sqrt{2}$+16$\sqrt{3}$C.80+16$\sqrt{2}$+12$\sqrt{3}$D.80+12$\sqrt{2}$+12$\sqrt{3}$

分析 由三視圖可得該幾何體是由三部分組成的一個(gè)組合體:它的上部分與下部分都是四棱錐,中間是-個(gè)正方體,再根據(jù)數(shù)據(jù)即可計(jì)算出答案.

解答 解:由三視圖可得該幾何體是由三部分組成的一個(gè)組合體,
它的上部分與下部分都是四棱錐,中間是-個(gè)正方體,
上部分的表面積為$\frac{1}{2}$×4×4×2+$\frac{1}{2}$×4×4$\sqrt{2}$×2=16+16$\sqrt{2}$;
中間部分的表面積為4×42=64;
下部分的表面積為$\frac{1}{2}$×4×4×$\frac{\sqrt{3}}{2}$×4=16$\sqrt{3}$.
故所求的表面積為80+16$\sqrt{2}$+16$\sqrt{3}$.
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖求表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知a=x2+x+$\sqrt{2}$,b=lg3,$c={e^{-\frac{1}{2}}}$,則a,b,c的大小關(guān)系為(  )
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列說(shuō)法的正確的是( 。
A.經(jīng)過(guò)定點(diǎn)P0(x0,y0)的直線(xiàn)都可以用方程y-y0=k(x-x0)表示
B.經(jīng)過(guò)定點(diǎn)A(0,b)的直線(xiàn)都可以用方程y=kx+b表示
C.不經(jīng)過(guò)原點(diǎn)的直線(xiàn)都可以用方程$\frac{x}{a}$+$\frac{y}$=1表示P1(x1,y1)、P2(x2,y2
D.經(jīng)過(guò)任意兩個(gè)不同的點(diǎn)的直線(xiàn)都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)來(lái)表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.定義:f1(x)=f(x),當(dāng)n≥2且x∈N*時(shí),fn(x)=f(fn-1(x)),對(duì)于函數(shù)f(x)定義域內(nèi)的x0,若正在正整數(shù)n是使得fn(x0)=x0成立的最小正整數(shù),則稱(chēng)n是點(diǎn)x0的最小正周期,x0稱(chēng)為f(x)的n~周期點(diǎn),已知定義在[0,1]上的函數(shù)f(x)的圖象如圖,對(duì)于函數(shù)f(x),下列說(shuō)法正確的是①②③(寫(xiě)出所有正確命題的編號(hào))
①1是f(x)的一個(gè)3~周期點(diǎn);
②3是點(diǎn)$\frac{1}{2}$的最小正周期;
③對(duì)于任意正整數(shù)n,都有fn(${\frac{2}{3}}$)=$\frac{2}{3}$;
④若x0∈($\frac{1}{2}$,1],則x0是f(x)的一個(gè)2~周期點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{1}{2}$,兩個(gè)焦點(diǎn)恰好在圓O:x2+y2=1上,若過(guò)橢圓C左焦點(diǎn)F的直線(xiàn)l與圓O的另一個(gè)交點(diǎn)為G,線(xiàn)段FG的中點(diǎn)為M,直線(xiàn)MO交橢圓C于A,B兩點(diǎn),且|AB|=$2\sqrt{2}$|FG|,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=ex-2ax與g(x)=-x3+ax2-(2a+1)x的圖象不存在相互平行或重合的切線(xiàn),則實(shí)數(shù)a的取值范圍[$-\sqrt{3}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某中學(xué)為了解初三年級(jí)學(xué)生“擲實(shí)心球”項(xiàng)目的整體情況,隨機(jī)抽取男、女生各20名進(jìn)行測(cè)試,記錄的數(shù)據(jù)如下:

已知該項(xiàng)目評(píng)分標(biāo)準(zhǔn)為:
 男生投擲距離(米)[5.4,6.0)[6.0,6.6)[6.6,7.4)[7.4,7.8)[7.8,8.6)[8.6,10.0)[10.0,+∞)
 
 女生投擲距離(米)
 
[5.1,5.4)[5.4,5.6)[5.6,6.4)[6.4,6.8)[6.8,7.2)[7.2,7.6)[7.6,+∞)
 個(gè)人得分(分) 
 4 5 6 7 8 9 10
注:滿(mǎn)分10分,且得9分以上(含9分)定為“優(yōu)秀”.
(Ⅰ)求上述20名女生得分的中位數(shù)和眾數(shù);
(Ⅱ)從上述20名男生中,隨機(jī)抽取2名,求抽取的2名男生中優(yōu)秀人數(shù)X的分布列;
(Ⅲ)根據(jù)以上樣本數(shù)據(jù)和你所學(xué)的統(tǒng)計(jì)知識(shí),試估計(jì)該年級(jí)學(xué)生實(shí)心球項(xiàng)目的整體情況.(寫(xiě)出兩個(gè)結(jié)論即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.三個(gè)恐怖集團(tuán)A,B,C分別策劃了一次謀殺活動(dòng),警方獲得如下情報(bào):
①第二次謀殺活動(dòng)是A集團(tuán)干的;
②第二次謀殺活動(dòng)不是A集團(tuán)干的;
③第三次謀殺活動(dòng)不是C集團(tuán)干的.
經(jīng)調(diào)查,上述三個(gè)情報(bào)只有一個(gè)是真的,其余兩個(gè)是假的,那么真情報(bào)的序號(hào)為③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.甲、乙兩人進(jìn)行乒乓球比賽,約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多2分或打滿(mǎn)8局時(shí)停止.設(shè)甲在每局中獲勝的概率為p(p>$\frac{1}{2}$),且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為$\frac{5}{8}$.
(Ⅰ)求p的值;
(Ⅱ)設(shè)ξ表示比賽停止時(shí)比賽的局?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案