對(duì)于定義在區(qū)間D上的函數(shù)f(x),若任給x0∈D,均有f(x0)∈D,則稱函數(shù)f(x)在區(qū)間D上封閉.
(1)試判斷f(x)=2x-1在區(qū)間[0,1]上是否封閉,并說明理由;
(2)若函數(shù)g(x)=
2x+m
x+2
在區(qū)間[2,9]上封閉,求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)h(x)=x3-3x在區(qū)間[a,b](a,b∈Z)上封閉,求a,b的值.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)f(x)在區(qū)間[0,1]上單調(diào)遞增,可得函數(shù)的值域?yàn)閇-1,1].由[-1,1]?[0,1],可得結(jié)論.
(2)根據(jù)函數(shù)g(x)=
2x+m
x+2
在區(qū)間[2,9]上封閉,分類討論求得實(shí)數(shù)m的取值范圍.
(3)利用導(dǎo)數(shù)研究h(x)的單調(diào)性,分類討論,求得m的范圍.
解答: 解:(1)∵f(x)=2x-1在區(qū)間[0,1]上單調(diào)遞增,所以函數(shù)的值域?yàn)閇-1,1].
而[-1,1]?[0,1],所以f(x)在區(qū)間[0,1]上不是封閉的.
(2)因?yàn)楹瘮?shù)g(x)=
2x+m
x+2
在區(qū)間[2,9]上封閉,
①當(dāng)m=4時(shí),函數(shù)g(x)的值域?yàn)閧2}⊆[2,9],適合題意.
②當(dāng)m>4時(shí),函數(shù)g(x)在區(qū)間[2,9]上單調(diào)遞減,g(x)的值域?yàn)閇
18+m
11
4+m
4
],
由為[
18+m
11
4+m
4
]⊆[2,9],得
18+m
11
≥2
4+m
4
≤9
,解得4≤m≤32.
③當(dāng)m<4時(shí),在區(qū)間[2,9]上有g(shù)(x)=
2x+m
x+2
=2+
m-4
x+2
<2,顯然不合題意.
綜上所述,實(shí)數(shù)m的取值范圍是[4,32].
(3)因?yàn)楹瘮?shù)h(x)=x3-3x,所以h′(x)=3(x+1)(x-1),
所以h(x)在(-∞,-1)、(1,+∞)上遞增,在(-1,1)上遞減.
①當(dāng)a<b≤-1時(shí),h(x)在區(qū)間[a,b]上遞增,所以
h(a)≥a
h(b)≤b
,
-2≤a≤-1
b≤-2
,顯然a、b無解.
②當(dāng)a≤-1且-1<b≤1時(shí),hmin(x)=h(-1)=2>b,不合題意.
③當(dāng)a≤-1且b>1時(shí),因?yàn)閔(-1)=2,h(1)=-2都在函數(shù)的值域內(nèi),
∴a≤-2,b≥2.
h(a)≥a
h(b)≤b
,即
a3≥4a
b4≤4b
,解得:
-2≤a≤2
-2≤b≤2
,故有a=-2,b=2.
④當(dāng)-1≤a<b≤1時(shí),h(x)在區(qū)間[a,b]上遞減,則
h(b)≥a
h(a)≤b

∵a、b∈z,經(jīng)驗(yàn)證,均不合題意.
⑤當(dāng)-1<a≤1 且b>1時(shí),hmin(x)=h(1)=-2<a,∴此情況不合題意.
⑥當(dāng)b>a≥1時(shí),h(x)在區(qū)間[a,b]上遞增,所以
h(a)≥a
h(b)≤b
,
此時(shí)無解.
綜上可得,所求的整數(shù)a、b的值為a=-2,b=2.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性的應(yīng)用,新定義,其中,分類討論,是解題的關(guān)鍵和難點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在一項(xiàng)農(nóng)業(yè)試驗(yàn)中,為了比較兩種肥料對(duì)于某種果樹的施肥效果,隨機(jī)選取了施用這兩種肥料的果樹各10棵的產(chǎn)量(單位:kg):
肥料A:29,34,35,37,48,42,46,44,49,53;
肥料B:30,34,42,47,46,50,52,53,54,56.
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,那種肥料的效果更好;
(2)根據(jù)兩組數(shù)據(jù)完成如圖莖葉圖,從莖葉圖看,那種肥料的效果更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直三棱柱ABC-A1B1C1中,AC=CB=AA1=2,∠ACB=90°,E是BB1的中點(diǎn),D∈AB,∠A1DE=90°.
(1)以C為原點(diǎn)建立坐標(biāo)系求D點(diǎn)的坐標(biāo)
(2)求二面角D-A1C-A的大。
(3)求E到平面 A1CD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 30 40 60 50 70
(Ⅰ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(Ⅱ)預(yù)測(cè)當(dāng)廣告費(fèi)支出為9百萬元時(shí)的銷售額.
最小二乘法:
?
y
=
?
a
+
?
b
x,
其中
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,
?
a
=
.
y
-
?
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的長(zhǎng)軸長(zhǎng)為2
2
,一個(gè)焦點(diǎn)的坐標(biāo)為(1,0).直線l:y=kx與橢圓C交于A,B兩點(diǎn),點(diǎn)P為橢圓上不同于A,B的任意一點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)l的斜率k=1,P為橢圓的右頂點(diǎn).求△ABP的面積.
(Ⅲ)若直線AP,BP的斜率存在且分別為k1,k2.求k1k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,點(diǎn)E在棱PA上,且PE=2EA.
(1)求BC的長(zhǎng);
(2)求異面直線PA與CD所成的角;
(3)求二面角A-BE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一段樓梯共有12個(gè)階梯,某人上樓時(shí),有時(shí)邁一階有時(shí)邁兩階,
(1)此人共用7步走完,問有多少種不同的上樓的方法.
(2)試求此人共有多少種不同的上樓的方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為數(shù)列{an}的前n項(xiàng)和,Sn=2n+n,則a4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)D到平面ACD1的距離
 

查看答案和解析>>

同步練習(xí)冊(cè)答案