一段樓梯共有12個(gè)階梯,某人上樓時(shí),有時(shí)邁一階有時(shí)邁兩階,
(1)此人共用7步走完,問(wèn)有多少種不同的上樓的方法.
(2)試求此人共有多少種不同的上樓的方法.
考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題
專題:應(yīng)用題,排列組合
分析:(1)由題意可知,用7步走完這一段樓梯時(shí),一步上一級(jí),有2步;一步上兩級(jí)有5步.可得結(jié)論;
(2)由題意,分類討論,用6,7,8,9,10,11,12步走完,可得結(jié)論.
解答: 解:(1)由題意可知,用7步走完這一段樓梯時(shí),一步上一級(jí),有2步;一步上兩級(jí)有5步,
所以,共有
C
2
7
=21;
(2)由題意,分類討論,用6,7,8,9,10,11,12步走完,可得
C
0
6
+
C
2
7
+
C
4
8
+
C
6
9
+
C
8
10
+
C
10
11
+
C
12
12
=233.
點(diǎn)評(píng):本題是中檔題,考查排列組合的應(yīng)用,注意分類討論,一步2級(jí)和一步2級(jí)的數(shù)目,以及走法,考查計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)a1=1,公比為q的等比數(shù)列,
(Ⅰ)證明:kCnk=nCn-1k-1(k,n∈N*,k≤n)
(Ⅱ)計(jì)算:a1Cn1+(a1+a2)Cn2+(a1+a2+a3)Cn3+…+(a1+a2+…+an)Cnn(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知a>0,b>0,比較a3+b3與a2b+ab2的大小;
(2)已知a,b,c是三個(gè)不全等的正數(shù),求證:
b+c
a
+
a+c
b
+
a+b
c
>6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在區(qū)間D上的函數(shù)f(x),若任給x0∈D,均有f(x0)∈D,則稱函數(shù)f(x)在區(qū)間D上封閉.
(1)試判斷f(x)=2x-1在區(qū)間[0,1]上是否封閉,并說(shuō)明理由;
(2)若函數(shù)g(x)=
2x+m
x+2
在區(qū)間[2,9]上封閉,求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)h(x)=x3-3x在區(qū)間[a,b](a,b∈Z)上封閉,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(
x
2
+
π
6
)cos
x
2
+
1
2
,x∈R,
(1)求f(x)的最小正周期、對(duì)稱中心及單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間[o,π]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)對(duì)任意x,y∈R均有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,f(1)=-
2
3

(1)判斷并證明f(x)在R上的單調(diào)性;
(2)求f(x)在[-3,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足
x-y≤0
0≤x+y≤20
0≤y≤15
,則2x+3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)求50名學(xué)生數(shù)學(xué)平均分的程序,在橫線上應(yīng)填的語(yǔ)句為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2x+
1
x
6的展開(kāi)式的常數(shù)項(xiàng)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案