【題目】為了了解一個(gè)小水庫(kù)中養(yǎng)殖的魚的有關(guān)情況,從這個(gè)水庫(kù)中多個(gè)不同位置捕撈出100條魚,稱得每條魚的質(zhì)量(單位:kg),并將所得數(shù)據(jù)分組,畫出頻率分布直方圖(如圖所示).
(1)在下面表格中填寫相應(yīng)的頻率;
分組 | 頻率 |
(2)估計(jì)數(shù)據(jù)落在中的概率;
(3)將上面捕撈的100條魚分別作一記分組頻率號(hào)后再放回水庫(kù).幾天后再?gòu)乃畮?kù)的多處不同位置捕撈出120條魚,其中帶有記號(hào)的魚有6條.請(qǐng)根據(jù)這一情況來(lái)估計(jì)該水庫(kù)中魚的總條數(shù).
【答案】(1)見(jiàn)解析;(2);(3)2000.
【解析】
(1)利用頻率分布直方圖中數(shù)據(jù),求出每個(gè)小長(zhǎng)方形的面積就是其對(duì)應(yīng)的頻率;
(2)先求出數(shù)據(jù)落在中的頻率,然后利用樣本數(shù)據(jù)落在中的頻率估計(jì)總體的概率;
(3)根據(jù)該水庫(kù)中魚的總條數(shù)等于捕撈的魚數(shù)除以帶記號(hào)的概率進(jìn)行求解即可.
(1)
分組 | 頻率 |
0.05 | |
0.2 | |
0.28 | |
0.30 | |
0.15 | |
0.02 |
(2)因?yàn)?/span>,所以數(shù)據(jù)落在中的概率為;
(3)因?yàn)?/span>,所以水庫(kù)中魚的總條數(shù)約為2000條.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①命題“若,則”的否命題為“若,則”;②“”是“”的必要不充分條件;③命題“,使得”的否定是:“,均有”;④命題“若,則”的逆命題為真命題.其中所有正確命題的序號(hào)是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在區(qū)間上的函數(shù),.
(Ⅰ)證明:當(dāng)時(shí),;
(Ⅱ)若曲線過(guò)點(diǎn)的切線有兩條,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且曲線與直線相切于點(diǎn),
(1)求;
(2)若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù),其中.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),,若存在,對(duì)任意的實(shí)數(shù),恒有成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于和之間,將測(cè)量結(jié)果按如下方式分成6組:第1組,第2組,…,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)由頻率分布直方圖估計(jì)該校高三年級(jí)男生身高的中位數(shù);
(2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與直線的交點(diǎn)為,圓.
(1)求過(guò)的交點(diǎn),且在兩坐標(biāo)軸上截距相等的直線方程;
(2)過(guò)點(diǎn)做圓的切線,求切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,斜率為k的動(dòng)直線l過(guò)點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)若直線l與曲線C有兩個(gè)交點(diǎn),求這兩個(gè)交點(diǎn)的中點(diǎn)P的軌跡關(guān)于參數(shù)k的參數(shù)方程;
(2)在條件(1)下,求曲線的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x﹣a)cosx﹣sinx,g(x)x3ax2,a∈R
(1)當(dāng)a=1時(shí),求函數(shù)y=f(x)在區(qū)間(0,)上零點(diǎn)的個(gè)數(shù);
(2)令F(x)=f(x)+g(x),試討論函數(shù)y=F(x)極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com