【題目】已知定義域為的奇函數(shù),滿足,下面四個關(guān)于函數(shù)的說法:①存在實數(shù),使關(guān)于的方程個不相等的實數(shù)根;②當時,恒有;③若當時,的最小值為,則;④若關(guān)于的方程的所有實數(shù)根之和為零,則.其中說法正確的有______.(將所有正確說法的標號填在橫線上)

【答案】①③

【解析】

根據(jù)題意,畫出函數(shù)圖像,結(jié)合函數(shù)圖像和函數(shù)性質(zhì)逐一判斷即可

結(jié)合函數(shù)為奇函數(shù),則

時,,

時,,,作出函數(shù)圖像,如圖:

對①,如圖,存在實數(shù)使得函數(shù)有7個交點,故①對;

對②,結(jié)合函數(shù)圖像,明顯函數(shù)不是嚴格的減函數(shù),故②錯;

對③,可令,如圖,兩函數(shù)相交時,可求得交點為,要使函數(shù)最小值為1,則,③對;

對④,若,令,則,令,則,

若滿足④的條件,則,則,故④錯;

故答案為:①③

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某游戲廠商對新出品的一款游戲設(shè)定了“防沉迷系統(tǒng)”,規(guī)則如下:

①3小時以內(nèi)(3小時)為健康時間,玩家在這段時間內(nèi)獲得的累積經(jīng)驗值單位:與游玩時間小時)滿足關(guān)系式:

②35小時(5小時)為疲勞時間,玩家在這段時間內(nèi)獲得的經(jīng)驗值為即累積經(jīng)驗值不變);

超過5小時為不健康時間,累積經(jīng)驗值開始損失,損失的經(jīng)驗值與不健康時間成正比例關(guān)系,比例系數(shù)為50.

時,寫出累積經(jīng)驗值E與游玩時間t的函數(shù)關(guān)系式,并求出游玩6小時的累積經(jīng)驗值;

該游戲廠商把累積經(jīng)驗值E與游玩時間t的比值稱為“玩家愉悅指數(shù)”,記作;若,且該游戲廠商希望在健康時間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于24,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將正整數(shù)12分解成兩個正整數(shù)的乘積有,,三種,其中是這三種分解中,兩數(shù)差的絕對值最小的,我們稱12的最佳分解.當是正整數(shù)的最佳分解時,我們規(guī)定函數(shù),例如.關(guān)于函數(shù)有下列敘述:,,,.其中正確的序號為 (填入所有正確的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)對定義城內(nèi)的每一個值,在其定義域內(nèi)都存在唯一的,使得成立,則稱該函數(shù)為函數(shù)”.

(1)判斷函數(shù)是否為函數(shù),并說明理由;

(2)若函數(shù)在定義域上為函數(shù),求的取值范圍;

(3)已知函數(shù)在定義域上為函數(shù)”.若存在實數(shù),使得對任意的,不等式都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的偶函數(shù),滿足,當時,,若,,,則,,的大小關(guān)系為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形所在平面與所在平面垂直,且,.

1)求證:

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是梯形, , ,側(cè)面底面.

(1)求證:平面平面;

(2)若,且三棱錐的體積為,求側(cè)面的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的右焦點為,且短軸長為,離心率為.

1)求橢圓的標準方程;

2)設(shè)點為橢圓軸正半軸的交點,是否存在直線,使得交橢圓兩點,且恰是的垂心?若存在,求的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,為等邊三角形,,的中點.

1)證明:;

2)若,求二面角平面角的余弦值.

查看答案和解析>>

同步練習冊答案