【題目】將正整數(shù)12分解成兩個正整數(shù)的乘積有,三種,其中是這三種分解中,兩數(shù)差的絕對值最小的,我們稱12的最佳分解.當是正整數(shù)的最佳分解時,我們規(guī)定函數(shù),例如.關于函數(shù)有下列敘述:,,.其中正確的序號為 (填入所有正確的序號).

【答案】①③

【解析】

試題由新定義知:7的分解有1×7一種,所以;24的分解有1×24,2×12,3×8,4×6四種,其中是這四種分解中,兩數(shù)差的絕對值最小的,所以;28的分解有1×28,2×14,4×7三種,其中是這三種分解中,兩數(shù)差的絕對值最小的,所以;144的分解有1×144,2×72,3×48,4×36,6×24,8×18,9×16,12×12八四種,其中12×12是這八種分解中,兩數(shù)差的絕對值最小的,所以。因此正確的序號為①③

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的一個側面為等邊三角形,且平面平面,四邊形是平行四邊形,,,.

1)求證:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,點在橢圓上.

)求橢圓的標準方程.

)是否存在斜率為的直線,使得當直線與橢圓有兩個不同交點,時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M: 及其上一點A2,4

1)設圓Nx軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;

2)設平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;

3)設點Tt,o)滿足:存在圓M上的兩點PQ,使得,求實數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求在區(qū)間上的最值;

(2)討論函數(shù)的單調(diào)性;

(3)當時,有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足:

(1)證明:是等比數(shù)列,并求數(shù)列的通項公式.

(2)設,若數(shù)列是等差數(shù)列,求實數(shù)的值;

(3)在(2)的條件下,設 記數(shù)列的前項和為,若對任意的存在實數(shù),使得,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)求函數(shù)的極值;

(2)問:是否存在實數(shù),使得有兩個相異零點?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的奇函數(shù),滿足,下面四個關于函數(shù)的說法:①存在實數(shù),使關于的方程個不相等的實數(shù)根;②當時,恒有;③若當時,的最小值為,則;④若關于的方程的所有實數(shù)根之和為零,則.其中說法正確的有______.(將所有正確說法的標號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某數(shù)學小組到進行社會實踐調(diào)查,了解到某公司為了實現(xiàn)1000萬元利潤目標,準備制定激勵銷售人員的獎勵方案:在銷售利潤超過10萬元時,按銷售利潤進行獎勵,且獎金y(單位:萬元)隨銷售利潤x(單位:萬元)的增加而增加,但獎金總數(shù)不超過5萬元,同時獎金不超過利潤的25%.同學們利用函數(shù)知識,設計了如下的函數(shù)模型,其中符合公司要求的是(參考數(shù)據(jù):,( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案