【題目】已知函數(shù)是連續(xù)的偶函數(shù),且時, 是單調(diào)函數(shù),則滿足的所有之積為( )
A. B. C. D.
【答案】D
【解析】
由y=f(x+2)為偶函數(shù)分析可得f(x)關(guān)于直線x=2對稱,進而分析可得函數(shù)f(x)在(2,+∞)和(﹣∞,2)上都是單調(diào)函數(shù),據(jù)此可得若f(x)=f(1),則有x=1或4﹣x=1,變形為二次方程,結(jié)合根與系數(shù)的關(guān)系分析可得滿足f(x)=f(1)的所有x之積,即可得答案.
根據(jù)題意,函數(shù)y=f(x+2)為偶函數(shù),則函數(shù)f(x)關(guān)于直線x=2對稱,
又由當x>2時,函數(shù)y=f(x)是單調(diào)函數(shù),則其在(﹣∞,2)上也是單調(diào)函數(shù),
若f(x)=f(1),則有x=1或4﹣x=1,
當x=1時,變形可得x2+3x﹣3=0,有2個根,且兩根之積為﹣3,
當4﹣x=1時,變形可得x2+x﹣13=0,有2個根,且兩根之積為﹣13,
則滿足f(x)=f(1)的所有x之積為(﹣3)×(﹣13)=39;
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種型號的農(nóng)機具零配件,為了預(yù)測今年7月份該型號農(nóng)機具零配件的市場需求量,以合理安排生產(chǎn),工廠對本年度1月份至6月份該型號農(nóng)機具零配件的銷售量及銷售單價進行了調(diào)查,銷售單價(單位:元)和銷售量(單位:千件)之間的6組數(shù)據(jù)如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售單價(元) | 11.1 | 9.1 | 9.4 | 10.2 | 8.8 | 11.4 |
銷售量(千件) | 2.5 | 3.1 | 3 | 2.8 | 3.2 | 2.4 |
(1)根據(jù)1至6月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到0.01);
(2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號農(nóng)機具零配件的生產(chǎn)成本為每件3元,那么工廠如何制定7月份的銷售單價,才能使該月利潤達到最大?(計算結(jié)果精確到0.1)
參考公式:回歸直線方程,
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是邊長,的矩形硬紙片,在硬紙片的四角切去邊長相等的小正方形后,再沿虛線折起,做成一個無蓋的長方體盒子,、是上被切去的小正方形的兩個頂點,設(shè).
(1)將長方體盒子體積表示成的函數(shù)關(guān)系式,并求其定義域;
(2)當為何值時,此長方體盒子體積最大?并求出最大體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報名,其中報名的醫(yī)生18人,護士12人,醫(yī)技6人,根據(jù)需要,從中抽取一個容量為n的樣本參加救援隊,若采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員.當抽取n+1人時,若采用系統(tǒng)抽樣,則需剔除1個報名人員,則抽取的救援人員為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)甲,乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為和,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設(shè)甲,乙兩組的研發(fā)是相互獨立的.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得萬元,若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得利潤萬元,求該企業(yè)可獲得利潤的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年,新冠狀肺炎疫情牽動每一個中國人的心,危難時刻眾志成城,共克時艱,為疫區(qū)助力.福建省漳州市東山縣共101個海鮮商家及個人為緩解武漢物質(zhì)壓力,募捐價值百萬的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國第七大島,介于廈門市和廣東省汕頭之間,東南是著名的閩南漁場和粵東漁場交匯處,因地理位置發(fā)展海產(chǎn)品養(yǎng)殖業(yè)具有得天獨厚的優(yōu)勢.根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗,某海鮮商家的海產(chǎn)品每只質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布.
(1)隨機購買10只該商家的海產(chǎn)品,求至少買到一只質(zhì)量小于265克該海產(chǎn)品的概率;
(2)2020年該商家考慮增加先進養(yǎng)殖技術(shù)投入,該商家欲預(yù)測先進養(yǎng)殖技術(shù)投入為49千元時的年收益增量.現(xiàn)用以往的先進養(yǎng)殖技術(shù)投入(千元)與年收益增量(千元).的數(shù)據(jù)繪制散點圖,由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近,且,,其中.根據(jù)所給的統(tǒng)計量,求y關(guān)于x的回歸方程,并預(yù)測先進養(yǎng)殖技術(shù)投入為49千元時的年收益增量.
附:若隨機變量,則;
對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“!薄ⅰ皥@”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產(chǎn)生到之間取整數(shù)值的隨機數(shù),分別用,,,代表“和”、“諧”、“!薄ⅰ皥@”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下組隨機數(shù):
由此可以估計,恰好第三次就停止摸球的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(Ⅰ)若的圖像在處的切線經(jīng)過點(3,4),求的值;
(Ⅱ)若,求證: ;
(Ⅲ)當函數(shù)存在三個不同的零點時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.
(1)求拋物線方程;
(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com