【題目】已知二次函數(shù)滿足

(1)求函數(shù)的解析式;

(2)

若函數(shù)在上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

求函數(shù)的最小值.

【答案】1fx)=﹣x2+2x+152m0,或m2②見解析

【解析】

1)據(jù)二次函數(shù)的形式設(shè)出fx)的解析式,將已知條件代入,列出方程,令方程兩邊的對應(yīng)系數(shù)相等解得.

2)函數(shù)gx)的圖象是開口朝上,且以xm為對稱軸的拋物線,

若函數(shù)gx)在x[02]上是單調(diào)函數(shù),則m0,或m2;

分當(dāng)m0時(shí),當(dāng)0m2時(shí),當(dāng)m2時(shí)三種情況分別求出函數(shù)的最小值,可得答案.

解:(1)設(shè)fx)=ax2+bx+c

f2)=15fx+1)﹣fx)=﹣2x+1

4a+2b+c15;ax+12+bx+1+c﹣(ax2+bx+c)=﹣2x+1;

2a=﹣2,a+b14a+2b+c15,解得a=﹣1,b2c15,

∴函數(shù)fx)的表達(dá)式為fx)=﹣x2+2x+15

2)∵gx)=(22mxfx)=x22mx15的圖象是開口朝上,且以xm為對稱軸的拋物線,

若函數(shù)gx)在x[0,2]上是單調(diào)函數(shù),則m0,或m2

當(dāng)m0時(shí),gx)在[02]上為增函數(shù),當(dāng)x0時(shí),函數(shù)gx)取最小值﹣15

當(dāng)0m2時(shí),gx)在[0,m]上為減函數(shù),在[m,2]上為增函數(shù),當(dāng)xm時(shí),函數(shù)gx)取最小值﹣m215;

當(dāng)m2時(shí),gx)在[0,2]上為減函數(shù),當(dāng)x2時(shí),函數(shù)gx)取最小值﹣4m11;

∴函數(shù)gx)在x[0,2]的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點(diǎn)的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)設(shè)個(gè)正數(shù)滿足).

(1)當(dāng)時(shí),證明:

(2)當(dāng)時(shí),不等式也成立,請你將其推廣到個(gè)正數(shù)的情形,歸納出一般性的結(jié)論并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓和雙曲線有共同焦點(diǎn),是它們的一個(gè)交點(diǎn),記橢圓和雙曲線的離心率分別,則的最小值是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為自然對數(shù)的底數(shù), .

(1)試討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左,右焦點(diǎn)分別為, ,離心率為, 是橢圓上的動點(diǎn),當(dāng)時(shí), 的面積為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若過點(diǎn)的直線交橢圓 兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在一個(gè)周期內(nèi)的圖象如下圖所示.

1)求函數(shù)的解析式;

2)設(shè),且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)遞增數(shù)列共有項(xiàng),定義集合,將集合中的數(shù)按從小到大排列得到數(shù)列

1)若數(shù)列共有4項(xiàng),分別為,,,寫出數(shù)列的各項(xiàng)的值;

2)設(shè)是公比為2的等比數(shù)列,且,若數(shù)列的所有項(xiàng)的和為4088,求的值;

3)若,求證:為等差數(shù)列的充要條件是數(shù)列恰有7項(xiàng);

查看答案和解析>>

同步練習(xí)冊答案