【題目】已知函數(shù) 為自然對(duì)數(shù)的底數(shù), .

(1)試討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1) 當(dāng)時(shí), 上單調(diào)遞增;當(dāng)時(shí), 上單調(diào)遞增,在上單調(diào)遞減.

(2) .

【解析】試題分析:(1)對(duì)函數(shù)求導(dǎo),關(guān)注定義域,對(duì)參數(shù) a進(jìn)行討論,得出函數(shù)的單調(diào)性;(2)解決恒成立的最基本方法就是分離參數(shù),化為對(duì)時(shí)恒成立.設(shè)右邊為函數(shù)g(x),通過(guò)兩次求導(dǎo)研究函數(shù)g(x)的單調(diào)性和最大值,最后利用極值原理得出a的范圍.

試題解析:

(1)的定義域?yàn)?/span>

時(shí),則,∴上單調(diào)遞增;

時(shí),則由,∴

當(dāng)時(shí), ,∴上單調(diào)遞增;

當(dāng)時(shí), ,∴上單調(diào)遞減.

綜上所述,當(dāng)時(shí), 上單調(diào)遞增;

當(dāng)時(shí), 上單調(diào)遞增,在上單調(diào)遞減.

(2)由題意得: 對(duì)時(shí)恒成立,

對(duì)時(shí)恒成立.

,( ),

. 

,

對(duì)時(shí)恒成立,

上單調(diào)遞減,

∴當(dāng)時(shí), ,∴, 上單調(diào)遞增;

當(dāng)時(shí), ,∴, 上單調(diào)遞減.

處取得最大值

的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形, 平面 , , , 分別是 的中點(diǎn).

(1)證明: ;

(2)設(shè)為線段上的動(dòng)點(diǎn),若線段長(zhǎng)的最小值為,求二面角的余弦值.

【答案】(1)見(jiàn)解析;(2)

【解析】試題分析:(1)證明線線垂直則需證明線面垂直,根據(jù)題意易得,然后根據(jù)等邊三角形的性質(zhì)可得,,因此平面,從而得證(2)先找到EH什么時(shí)候最短,顯然當(dāng)線段長(zhǎng)的最小時(shí), ,在中, , , ,∴,由中, ,∴.然后建立空間直角坐標(biāo)系,寫出兩個(gè)面法向量再根據(jù)向量的夾角公式即可得余弦值

解析:(1)證明:∵四邊形為菱形,

為正三角形.又的中點(diǎn),∴.

,因此.

平面, 平面,∴.

平面, 平面,

平面.又平面,∴.

(2)如圖, 上任意一點(diǎn),連接, .

當(dāng)線段長(zhǎng)的最小時(shí), ,由(1)知,

平面 平面,故.

中, ,

,

中, ,∴.

由(1)知, , 兩兩垂直,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,又 分別是, 的中點(diǎn),

可得 , ,

,

所以, .

設(shè)平面的一法向量為,

因此,

,則,

因?yàn)?/span>, , ,所以平面

為平面的一法向量.又,

所以 .

易得二面角為銳角,故所求二面角的余弦值為.

型】解答
結(jié)束】
20

【題目】2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考已知橢圓 的左頂點(diǎn)為,上頂點(diǎn)為,直線與直線垂直,垂足為點(diǎn),且點(diǎn)是線段的中點(diǎn).

I)求橢圓的方程;

II)如圖,若直線 與橢圓交于, 兩點(diǎn),點(diǎn)在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于下列四個(gè)命題:

p1:x0(0,+∞),;

p2:x0(0,1),lox0>lox0;

p3:x(0,+∞),<lox;

p4:x<lox.

其中的真命題是(  )

A. p1,p3 B. p1,p4

C. p2,p3 D. p2,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程是,將向上平移2個(gè)單位得到曲線. 

(1)求曲線的極坐標(biāo)方程;

(2)直線的參數(shù)方程為為參數(shù)),判斷直線與曲線的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù))

(1)若,當(dāng)時(shí),試比較2的大。

(2)若函數(shù)有兩個(gè)極值點(diǎn),求的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓過(guò), 兩點(diǎn),且圓心在直線.

1)求圓的方程;

2)若直線過(guò)點(diǎn)且被圓截得的線段長(zhǎng)為,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市民用水?dāng)M實(shí)行階梯水價(jià),每人用水量中不超過(guò)立方米的部分按4/立方米收費(fèi),超出立方米的部分按10/立方米收費(fèi),從該市隨機(jī)調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:

1)如果為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價(jià)格為4/立方米, 至少定為多少?

2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)時(shí),估計(jì)該市居民該月的人均水費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn是數(shù)列{an}的前n項(xiàng)和,且4Sn=an2+2an﹣3

1)求數(shù)列{an}的通項(xiàng)公式;

2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,某城市的市民收入逐年增長(zhǎng),表1是該城市某銀行連續(xù)五年的儲(chǔ)蓄存款額(年底余額):

表1

年份x

2011

2012

2013

2014

2015

儲(chǔ)蓄存款額y(千億元)

5

6

7

8

10

為了研究計(jì)算的方便,工作人員將表1的數(shù)據(jù)進(jìn)行了處理,令tx-2 010,zy-5,得到表2:

表2

時(shí)間代號(hào)t

1

2

3

4

5

z

0

1

2

3

5

(1)z關(guān)于t的線性回歸方程是________;y關(guān)于x的線性回歸方程是________

(2)用所求回歸方程預(yù)測(cè)到2020年年底,該銀行儲(chǔ)蓄存款額可達(dá)________千億元.

(附:線性回歸方程x,其中,)

查看答案和解析>>

同步練習(xí)冊(cè)答案