【題目】某市民用水擬實行階梯水價,每人用水量中不超過立方米的部分按4/立方米收費,超出立方米的部分按10/立方米收費,從該市隨機調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:

1)如果為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價格為4/立方米, 至少定為多少?

2)假設同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,當時,估計該市居民該月的人均水費.

【答案】3;(10.5.

【解析】試題分析:(1)根據(jù)水量的頻率分布直方圖知月用水量不超過立方米的居民占,所以至少定為;(2)直接求每個數(shù)據(jù)用該組區(qū)間的右端點值與各組頻率的乘積之和即可.

試題解析:(1)由用水量的頻率分布直方圖知,

該市居民該月用水量在區(qū)間內(nèi)的頻率依次為

所以該月用水量不超過立方米的居民占,用水量不超過立方米的居民占.依題意, 至少定為

2)由用水量的頻率分布直方圖及題意,得居民該月用水費用的數(shù)據(jù)分組與頻率分布表:

組號

1

2

3

4

5

6

7

8

分組









頻率

0.1

0.15

0.2

0.25

0.15

0.05

0.05

0.05

根據(jù)題意,該市居民該月的人均水費估計為:

(元).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖3,是一個直角梯形,,邊上一點,、相交于,.將△沿折起,使平面⊥平面,連接、,得到如圖4所示的四棱錐

(Ⅰ)求證:⊥平面;

(Ⅱ)求直線與面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20175月,來自一帶一路沿線的20國青年評選出了中國的新四大發(fā)明:高鐵、掃碼支付、共享單車和網(wǎng)購。為拓展市場,某調(diào)研組對甲、乙兩個品牌的共享單車在5個城市的用戶人數(shù)進行統(tǒng)計,得到如下數(shù)據(jù):

城市

品牌

甲品牌(百萬)

4

3

8

6

12

乙品牌(百萬)

5

7

9

4

3

Ⅰ)如果共享單車用戶人數(shù)超過5百萬的城市稱為優(yōu)質(zhì)潛力城市,否則非優(yōu),請據(jù)此判斷是否有85%的把握認為優(yōu)質(zhì)潛力城市與共享單車品牌有關?

Ⅱ)如果不考慮其它因素,為拓展市場,甲品牌要從這5個城市中選出3個城市進行大規(guī)模宣傳.

①在城市Ⅰ被選中的條件下,求城市Ⅱ也被選中的概率;

②以表示選中的城市中用戶人數(shù)超過5百萬的個數(shù),求隨機變量的分布列及數(shù)學期望

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: K2=,n=a+b+c+d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 為自然對數(shù)的底數(shù), .

(1)試討論函數(shù)的單調(diào)性;

(2)當時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設點.

(1)求該橢圓的標準方程;

(2)若是橢圓上的動點,求線段中點的軌跡方程;

(3)過原點的直線交橢圓于點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高三理科某班有男同學30,女同學15,老師按照分層抽樣的方法組建一個6人的課外興趣小組.

(1)求課外興趣小組中男、女同學各應抽取的人數(shù);

(2)在一周的技能培訓后從這6人中選出兩名同學做某項實驗方法是先從小組里選出1名同學做實驗,該同學做完后,再從小組內(nèi)剩下的同學中選1名同學做實驗,求選出的兩名同學中恰好僅有一名女同學的概率;

(3)實驗結束后第一次做實驗的同學得到的實驗數(shù)據(jù)為1.6、21.9、2.52,第二次做實驗的同學得到的實驗數(shù)據(jù)是2.1、1.8、1.9、2、2.2,請問哪位同學的實驗更穩(wěn)定?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(ax2bxc)ex(a>0)的導函數(shù)yf′(x)的兩個零點為-3和0.

(1)求f(x)的單調(diào)區(qū)間;

(2)若f(x)的極小值為-1,求f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線與直線垂直.

(1)求實數(shù)值;

(2)若不等式對任意的實數(shù)恒成立,求實數(shù)的取值范圍;

(3)設,且數(shù)列的前項和為,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)若時,關于的方程有唯一解,求的值

查看答案和解析>>

同步練習冊答案