【題目】已知函數(shù),且.
(1)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍;
(2)設函數(shù),當時,恒成立,求的取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1)因為函數(shù)在區(qū)間上是減函數(shù),則恒成立,轉化為二次函數(shù)恒成立問題,得解;(2)令,恒成立等價于恒成立,利用導數(shù)討論的單調(diào)性求最值.
試題解析:(1)因為函數(shù)在區(qū)間上是減函數(shù),則,
即在上恒成立
當時,令得,
①若,則,解得;②若,則,解得.
綜上,實數(shù)的取值范圍是.
(2)令,則,
根據(jù)題意,當時,恒成立.
所以.
①當時,時,恒成立,
所以在上是增函數(shù),且,所以不符合題意
②當時,時,恒成立.
所以在上是增函數(shù),且,所以不符題意.
③當時,時,恒有,故在上是減函數(shù),
于是“對任意都成立”的充要條件是,
即,解得,故
綜上,的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),),在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線.
(1)求曲線的普通方程,并將的方程化為極坐標方程;
(2)直線的極坐標方程為,其中滿足,若曲線與的公共點都在上,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 |
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次籃球定點投籃訓練中,規(guī)定每人最多投3次.在處每投進一球得3分;在處每投進一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次. 某同學在處的投中率,在處的投中率為.該同學選擇先在處投一球,以后都在處投,且每次投籃都互不影響.用表示
該同學投籃訓練結束后所得的總分,其分布列為:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求隨機變量的數(shù)學期望;
(3)試比較該同學選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)據(jù)是鄭州市普通職工個人的年收入,若這個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個數(shù)據(jù)中,下列說法正確的是( )
A. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點是直線上的一動點,過點作圓的切線,切點為.
(1)當切線的長度為時,求點的坐標;
(2)若的外接圓為圓,試問:當在直線上運動時,圓是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由.
(3)求線段長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com