A. | x+y≥0 | B. | x+y≤0 | C. | x-y≤0 | D. | x-y≥0 |
分析 構造函數(shù)f(x)=ax-a-x,g(y)=b-y-by,結合函數(shù)的單調(diào)性,可得x≤0,且y≤0,即x+y≤0時,ax-a-x≤b-y-by恒成立,進而ax+by≤a-x+b-y.
解答 解:∵ax+by≤a-x+b-y,
∴ax-a-x≤b-y-by,
令f(x)=ax-a-x,g(y)=b-y-by,
∵1<a<b,
則f(x)為增函數(shù),g(y)為減函數(shù),
且f(0)=g(0)=0,
故x≤0,且y≤0,即x+y≤0時,ax-a-x≤b-y-by恒成立,
故選:B.
點評 本題考查的知識點是函數(shù)恒成立問題,指數(shù)函數(shù)的圖象和性質(zhì),函數(shù)的單調(diào)性,難度中檔.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | b<a<c | B. | a<b<c | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com