(本題
滿分12分)已知
是橢圓
的兩個焦點,
是橢圓上的點,且
.
(1)求
的周長;
(2)求點
的坐標
解:橢圓
中,長半軸
,
焦距
(1)根據(jù)橢
圓定義,
所以,
的周長為
………………5分
(2)設(shè)點
坐標為
由
得,
又
∴
∵
∴
,則
∴點
坐標為
或
或
或
………………12分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:填空題
P是橢圓
上的點,F(xiàn)
1、F
2是兩個焦點,則|PF
1|·|PF
2|的最大值與最小值之差是_____
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
P為橢圓
+
=1上任意一點,
F1、
F2為左、右焦點,如圖所示.
(1)若
PF1的中點為
M,求證:|
MO|=5-
|
PF1|;
(2)若∠
F1PF2=60°,求|
PF1|·|
PF2|之值;
(3)橢圓上是否存在點
P,使
·
=0,若存在,求出
P點的坐標, 若不存在,試說明理由
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)
為坐標原點,
是橢圓
的左、右焦點,若在橢圓上存在點
滿足
,且
,則該橢圓的離心率為( ▲ )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)
是橢圓
的兩個焦點,
是以
為直徑的圓與橢圓的一個交點,且
,則該橢圓的離心率為 ( )
.
.
.
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分) 在直角坐標系
中,點
到點
,
的距離之和是
,點
的軌跡是
,直線
與軌跡
交于不同的兩點
和
.⑴求軌跡
的方程;⑵是否存在常數(shù)
,
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
設(shè)橢圓
:
的焦點分別為
、
,拋物線
:
的準線與
軸的交點為
,且
.
(I)求
的值及橢圓
的方程;
(II)過
、
分別作互相垂直的兩直線與橢圓分別交于
、
、
、
四點(如圖),
求四邊形
面積的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
兩個正數(shù)
a、
b的等差中項是
,一個等比中項是
,且
則橢圓
的離心率
e等于( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知點
和
,
是橢圓
上一動點,則
的最大值是____________
查看答案和解析>>