如圖,在三棱錐P-ABC中,PA⊥PC,AB=PB,E,F(xiàn)分別是PA,AC的中點(diǎn).求證:(1)EF∥平面PBC;
(2)平面BEF⊥平面PAB.
考點(diǎn):平面與平面垂直的判定,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)由三角形中位線定理推導(dǎo)出EF∥PC,由此能證明EF∥平面PBC.
(2)由已知條件推導(dǎo)出PA⊥BE,PA⊥EF,由此能證明平面PAB⊥平面BEF.
解答: 證明:(1)在△APC中,
因?yàn)镋,F(xiàn)分別是PA,AC的中點(diǎn),
所以EF∥PC,…(3分)
又PC?平面PAC,EF?平面PAC,
所以EF∥平面PBC;      …(6分)
(2)因?yàn)锳B=PB,且點(diǎn)E是PA的中點(diǎn),所以PA⊥BE;  …(9分)
又PA⊥PC,EF∥PC,所以PA⊥EF,…(12分)
因?yàn)锽E?平面BEF,EF?平面BEF,
BE∩EF=E,PA?平面PAB,
所以平面PAB⊥平面BEF.…(14分)
點(diǎn)評:本題考查直線與平面平行的證明,考查平面與平面垂直的證明,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

小華參加學(xué)校創(chuàng)意社團(tuán),上交一份如圖所示的作品:邊長為2的正方形中作一內(nèi)切圓⊙O,在⊙O內(nèi)作一個(gè)關(guān)于正方形對角線對稱的內(nèi)接“十”字形圖案.OA垂直于該“十”字形圖案的一條邊,點(diǎn)P為該邊上的一個(gè)端點(diǎn).記“十”字形圖案面積為S,∠AOP=θ.試用θ表示S,并由此求出S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=alnx,f(x)=x3+x2+bx.
(1)若f(x)在區(qū)間[1,2]上不是單調(diào)函數(shù),求實(shí)數(shù)b的范圍;
(2)若對任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)b=0時(shí),設(shè)F(x)=
f(-x),x<1
g(x),x≥1
,對任意給定的正實(shí)數(shù)a,曲線y=F(x)上是否存在兩點(diǎn)P,Q,使得△POQ是以O(shè)(O為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在y軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
2x
1+2x
的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

k為何值時(shí),直線y=kx+2和橢圓2x2+3y2=6有兩個(gè)公共點(diǎn)?有一個(gè)公共點(diǎn)?沒有公共點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3個(gè)人坐在一排6個(gè)座位上,問:
(Ⅰ)3個(gè)人都相鄰的坐法有多少種?
(Ⅱ)空位都不相鄰的坐法有多少種?
(Ⅲ)空位至少有2個(gè)相鄰的坐法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-1,0),點(diǎn)A關(guān)于y軸的對稱點(diǎn)為B,直線AM,BM相交于點(diǎn)M,且兩直線的斜率kAM、kBM滿足kAM-kBM=2.
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C與y軸的交點(diǎn)為T,是否存在平行于AT的直線l,使得直線l與軌跡C有公共點(diǎn),且直線AT與l的距離等于
2
2
?若存在,求直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是拋物線y2=x的焦點(diǎn),點(diǎn)A,B在該拋物線上且位于x軸的兩側(cè),
OA
OB
=2(其中O為坐標(biāo)原點(diǎn)),則△ABO與△AFO面積之和的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為橢圓4x2+y2=4上的點(diǎn),O為原點(diǎn),則OP的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案