【題目】設(shè)函數(shù)f(x)=
(1)令N(x)=(1+x)2﹣1+ln(1+x),判斷并證明N(x)在(﹣1,+∞)上的單調(diào)性,并求N(0);
(2)求f(x)在定義域上的最小值;
(3)是否存在實(shí)數(shù)m,n滿足0≤m<n,使得f(x)在區(qū)間[m,n]上的值域也為[m,n]? (參考公式:[ln(1+x)′]=

【答案】
(1)解:當(dāng)x>﹣1時(shí),N(x)=2x+2+ >0

所以,N(x)在(﹣1,+∞)上是單調(diào)遞增,N(0)=0


(2)解:f(x)的定義域是(﹣1,+∞)

當(dāng)﹣1<x<0時(shí),N(x)<0,所以,f(x)<0,

當(dāng)x>0時(shí),N(x)>0,所以,f(x)>0,

所以,在(﹣1,0)上f(x)單調(diào)遞減,在(0,+∞)上,f(x)單調(diào)遞增,

所以,fmin=f(0)=0


(3)解:由(2)知f(x)在[0,+∞)上是單調(diào)遞增函數(shù),

若存在m,n滿足條件,則必有f(m)=m,f(n)=n,

也即方程f(x)=x在[0,+∞)上有兩個(gè)不等的實(shí)根m,n,

但方程f(x)=x,即 =0只有一個(gè)實(shí)根x=0,

所以,不存在滿足條件的實(shí)數(shù)m,n


【解析】(1)先對(duì)函數(shù)求導(dǎo),由導(dǎo)函數(shù)在x>﹣1時(shí)的符號(hào)判斷函數(shù)的單調(diào)性,代入求N(0)的值,(2)直接求定義域,利用f(x)單調(diào)性求解函數(shù)f(x)的最小值、值域,(3)假設(shè)存在符合條件的m,n則有 ,推導(dǎo)可判斷m,n是否存在.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的最大(小)值與導(dǎo)數(shù)的理解,了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊分別為a,b,c,且a+c=6,b=2,cosB=
(1)求a,c的值;
(2)求sin(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校高二年級(jí)共2000名學(xué)生,其中男生1200人.為調(diào)查學(xué)生們的手機(jī)使用情況,采用分層抽樣的方法,隨機(jī)抽取100位學(xué)生每周平均使用手機(jī)上網(wǎng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).根據(jù)這100個(gè)數(shù)據(jù),得到學(xué)生每周平均使用手機(jī)上網(wǎng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間分別為.

(1)應(yīng)收集男生、女生樣本數(shù)據(jù)各多少人?

(2)估計(jì)我校高二年級(jí)學(xué)生每周平均使用手機(jī)上網(wǎng)時(shí)間超過(guò)4小時(shí)的概率.

(3)將平均每周使用手機(jī)上網(wǎng)時(shí)間在內(nèi)定義為“長(zhǎng)時(shí)間使用手機(jī)”,在內(nèi)定義為“短時(shí)間使用手機(jī)”.在樣本數(shù)據(jù)中,有25名學(xué)生不近視.請(qǐng)完成下列2×2列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為“學(xué)生每周使用手機(jī)上網(wǎng)時(shí)間與近視程度有關(guān)”.

近視

不近視

合計(jì)

長(zhǎng)時(shí)間使用手機(jī)上網(wǎng)

短時(shí)間使用手機(jī)上網(wǎng)

15

合計(jì)

25

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1 , ∠BAC=90°,A1A⊥平面ABC,A1A= ,AB= ,AC=2,A1C1=1, = . (Ⅰ)證明:BC⊥平面A1AD
(Ⅱ)求二面角A﹣CC1﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,己知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且 =λ(0<λ<1)
(1)求證:不論λ為何值,總有EF⊥平面ABC:
(2)若λ= ,求三棱錐A﹣BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公差不為零的等差數(shù)列{an}中, S2=16,且成等比數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)求數(shù)列{|an|}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.某共享單車運(yùn)營(yíng)公司為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車.現(xiàn)有采購(gòu)成本分別為元/輛和元/輛的兩款車型可供選擇,按規(guī)定每輛單車最多使用年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車輛報(bào)廢年限各不相同.考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車型的單車各輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命頻數(shù)表見(jiàn)下表.

經(jīng)測(cè)算,平均每輛單車每年可以帶來(lái)收入元.不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整年.

(1)分別估計(jì)、兩款車型使用壽命不低于年的概率;

(2)如果你是公司的負(fù)責(zé)人,以參加科學(xué)模擬測(cè)試的兩款車型各輛單車產(chǎn)生利潤(rùn)的平均數(shù)為決策依據(jù),你會(huì)選擇采購(gòu)哪款車型?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),是函數(shù),)圖象上的任意兩點(diǎn),且角的終邊經(jīng)過(guò)點(diǎn),若時(shí),的最小值為

1)求函數(shù)的解析式;

2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ )的周期為π,且圖象上的一個(gè)最低點(diǎn)為M( ).

(1)求f(x)的解析式及單調(diào)遞增區(qū)間;

(2)當(dāng)x∈[0,]時(shí),求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案