【題目】已知函數(shù)f(x)=﹣ +x在區(qū)間[m,n]上的最小值是2m,最大值是2n,求m,n的值.
【答案】解:①當(dāng)m<n≤1時(shí),函數(shù)在區(qū)間[m,n]上單調(diào)增,f(m)=﹣ +m=2m,f(n)=﹣ +n=2n,
求得m=﹣2,n=0.
②當(dāng)1<m<n時(shí),f(x)在[m,n]上遞減,且f(x)< 值域?yàn)閇2m,2n],2n< ,矛盾
③m≤1<n時(shí),f(x)mac= ,
若值域?yàn)閇2m,2n],
則2n= ,n= 652與n>1矛盾
綜上,符合條件的m,n的值為m=﹣2,n=0
【解析】對(duì)m和n的范圍進(jìn)行分類(lèi)討論,并根據(jù)函數(shù)的單調(diào)性表示出函數(shù)的最大值和最小值建立等式求得m和n.
【考點(diǎn)精析】本題主要考查了函數(shù)的最值及其幾何意義的相關(guān)知識(shí)點(diǎn),需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲挡拍苷_解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U={R},集合A={x|log2(3﹣x)≤2},集合B= .
(1)求A,B;
(2)求(CUA)∩B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的對(duì)角線與相交于點(diǎn),四邊形為矩形,平面平面.
(1)求證:平面平面;
(2)若點(diǎn)在線段上,且,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組對(duì)象不能構(gòu)成一個(gè)集合的是( )
A.不超過(guò)20的非負(fù)實(shí)數(shù)
B.方程x2﹣9=0在實(shí)數(shù)范圍內(nèi)的解
C. 的近似值的全體
D.臨川十中2016年在校身高超過(guò)170厘米的同學(xué)的全體
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B是拋物線x2=2py(p>0)上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),非零向量滿足.
(1)求證:直線AB經(jīng)過(guò)一定點(diǎn);
(2)當(dāng)AB的中點(diǎn)到直線y-2x=0的距離的最小值為時(shí),求p的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x+ (x≠0).
(1)判斷并證明函數(shù)在其定義域上的奇偶性;
(2)判斷并證明函數(shù)在(2,+∞)上的單調(diào)性;
(3)解不等式f(2x2+5x+8)+f(x﹣3﹣x2)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的左焦點(diǎn)F為圓的圓心,且橢圓C上的點(diǎn)到點(diǎn)F的距離最小值為。
(I)求橢圓C的方程;
(II)已知經(jīng)過(guò)點(diǎn)F的動(dòng)直線與橢圓C交于不同的兩點(diǎn)A、B,點(diǎn)M坐標(biāo)為(),證明: 為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= 是奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并給以證明;
(3)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是直三棱柱,底面是等腰直角三角形,且,直三棱柱的高等于4,線段的中點(diǎn)為,線段的中點(diǎn)為,線段的中點(diǎn)為.
(1)求異面直線、所成角的大小;
(2)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com