已知函數(shù)的圖象過點(diǎn)(-1,-6),且函數(shù) 的圖象關(guān)于y軸對稱.

(1)求的值及函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)在(-1,1)上單調(diào)遞減,求實(shí)數(shù)的取值范圍。

【解析】本試題主要考查了導(dǎo)數(shù)在函數(shù)研究中的應(yīng)用。利用導(dǎo)數(shù)能求解函數(shù)的單調(diào)性和奇偶性問題,以及能根據(jù)函數(shù)單調(diào)區(qū)間,逆向求解參數(shù)的取值范圍的求解問題。要利用導(dǎo)數(shù)恒小于等于零來解得 。

 

【答案】

解:(1)由函數(shù)f(x)圖象過點(diǎn)(-1,-6),得m-n=-3,

由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n,

則g(x)=f′(x)+6x=3x2+(2m+6)x+n;

而g(x)圖象關(guān)于y軸對稱,所以-=0,所以m=-3,代入①得n=0.

于是f′(x)=3x2-6x=3x(x-2).   由f′(x)>0得x>2或x<0,

故f(x)的單調(diào)遞增區(qū)間是(-∞,0),(2,+∞);

由f′(x)<0得0<x<2,

故f(x)的單調(diào)遞減區(qū)間是(0,2).

(2)解:  由在(-1,1)上恒成立,得a≥3x2-6x對x∈(-1,1)恒成立. ∵-1<x<1,∴3x2 -6x<9,∴只需a≥9.∴a≥9.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(05年福建卷文)(12分)

已知函數(shù)的圖象過點(diǎn)P(0,2),且在點(diǎn)M(-1,f(-1))處的切線方程為.

   (Ⅰ)求函數(shù)的解析式;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)

已知函數(shù)的圖象過點(diǎn),且在點(diǎn)處的切線方程為.

   (Ⅰ)求函數(shù)的解析式;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市盧灣區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知函數(shù)的圖象過點(diǎn)A(3,7),則此函的最小值是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省資陽市高一上學(xué)期期末質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

已知函數(shù)的圖象過點(diǎn),且圖象上與點(diǎn)P最近的一個(gè)最低點(diǎn)是

(Ⅰ)求的解析式;

(Ⅱ)若,且為第三象限的角,求的值;

(Ⅲ)若在區(qū)間上有零點(diǎn),求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建省高二下學(xué)期第一次階段考數(shù)學(xué)理科試卷 題型:解答題

已知函數(shù)的圖象過點(diǎn)P(0,2),且在點(diǎn)M(-1,f(-1))處的切線方程為.

(1)求函數(shù)的解析式;  (2)求函數(shù)的單調(diào)區(qū)間

 

查看答案和解析>>

同步練習(xí)冊答案