,曲線在點處的切線與直線垂直.
(1)求的值;
(2)若對于任意的,恒成立,求的范圍;
(3)求證:

解析試題分析:(1)求得函數(shù)f(x)的導函數(shù),利用曲線y=f(x)在點(1,f(1))處的切線與直線2x+y+1=0垂直,即可求a的值;
(2)先將原來的恒成立問題轉(zhuǎn)化為lnx≤m(x?),設g(x)=lnx?m(x?),即?x∈(1,+∞),g(x)≤0.利用導數(shù)研究g(x)在(0,+∞)上單調(diào)性,求出函數(shù)的最大值,即可求得實數(shù)m的取值范圍.
(3)由(2)知,當x>1時,m=時,lnx< (x?)成立.不妨令x=,k∈N*,得出
 [ln(2k+1)?ln(2k?1)]<,k∈N*,再分別令k=1,2,,n.得到n個不等式,最后累加可得.
(1)         2分
由題設,∴
.                          4分
(2),,,即
,即.
             6分
①若,,這與題設矛盾.        7分
②若方程的判別式
,即時,.上單調(diào)遞減,
,即不等式成立.                   8分
時,方程,設兩根為 
,單調(diào)遞增,,與題設矛盾.
綜上所述, .                      10分
(3) 由(2)知,當時, 時,成立.
不妨令
所以,
              11分
             12分
累加可得

     ---------------14分
考點:1.利用導數(shù)研究曲線上某點切線方程;2.導數(shù)在最大值、最小值問題中的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設f(x)=ln(1+x)-x-ax2.
(1)當x=1時,f(x)取到極值,求a的值;
(2)當a滿足什么條件時,f(x)在區(qū)間[-,-]上有單調(diào)遞增區(qū)間?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x2-(1+2a)x+aln x(a為常數(shù)).
(1)當a=-1時,求曲線y=f(x)在x=1處切線的方程;
(2)當a>0時,討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性,并寫出相應的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)(2011•重慶)設f(x)=x3+ax2+bx+1的導數(shù)f′(x)滿足f′(1)=2a,f′(2)=﹣b,其中常數(shù)a,b∈R.
(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程.
(Ⅱ)設g(x)=f′(x)e﹣x.求函數(shù)g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的極值;(2)當時,討論的單調(diào)性。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,函數(shù),
(1)若曲線與曲線在它們的交點處的切線互相垂直,求,的值;
(2)設,若對任意的,且,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),為常數(shù)).
(1)函數(shù)的圖象在點處的切線與函數(shù)的圖象相切,求實數(shù)的值;
(2)若,、使得成立,求滿足上述條件的最大整數(shù);
(3)當時,若對于區(qū)間內(nèi)的任意兩個不相等的實數(shù)、,都有
成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最大值;
(2)若,求的取值范圍.
(3)證明:  +(n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,設.討論函數(shù)的單調(diào)性;
(2)證明當.

查看答案和解析>>

同步練習冊答案