【題目】網(wǎng)上購物逐步走進(jìn)大學(xué)生活,某大學(xué)學(xué)生宿舍4人積極參加網(wǎng)購,大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點數(shù)小于5的人去京東商城購物,且參加者必須從淘寶網(wǎng)和京東商城選擇一家購物.
(1)求這4個人中恰有1人去淘寶網(wǎng)購物的概率;
(2)用,分別表示這4個人中去淘寶網(wǎng)和京東商城購物的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
【答案】(1);(2)分布列詳見解析,.
【解析】
試題本題主要考查概率、離散型隨機(jī)變量的分布列和數(shù)學(xué)期望等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,先求出每個人去淘寶網(wǎng)購物的概率,去京東商城購物的概率,再利用二項分布計算恰有1人去淘寶購物的概率;第二問,先寫出X的所有可能取值,再利用二項分布分布求出概率,列出分布列,再利用求出隨機(jī)變量X的數(shù)學(xué)期望.
試題解析:依題意,這4個人中,每個人去淘寶網(wǎng)購物的概率為,去京東商城購物的概率為.設(shè)“這4個人中恰有i人去淘寶網(wǎng)購物”為事件,則.
(Ⅰ)這4個人中恰有1人去淘寶網(wǎng)購物的概率.
(II)易知的所有可能取值為.
,
,
.
所以的分布列是
0 | 3 | 4 | |
P |
隨機(jī)變量ξ的數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明跟父母、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點,直線過點與拋物線交于, 兩點.點關(guān)于軸的對稱點為,連接.
(1)求拋物線線的標(biāo)準(zhǔn)方程;
(2)問直線是否過定點?若是,求出定點坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了貫徹落實中央省市關(guān)于新型冠狀病毒肺炎疫情防控工作要求,積極應(yīng)對新型冠狀病毒疫情,切實做好2020年春季開學(xué)工作,保障校園安全穩(wěn)定,普及防控知識,確保師生生命安全和身體健康.某校開學(xué)前,組織高三年級800名學(xué)生參加了“疫情防控”網(wǎng)絡(luò)知識競賽(滿分150分).已知這800名學(xué)生的成績均不低于90分,將這800名學(xué)生的成績分組如下:第一組,第二組,第三組,第四組,第五組,第六組,得到的頻率分布直方圖如圖所示.
(1)求的值并估計這800名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)該校“群防群控”督查組為更好地督促高三學(xué)生的“個人防控”,準(zhǔn)備從這800名學(xué)生中取2名學(xué)生參與督查工作,其取辦法是:先在第二組第五組第六組中用分層抽樣的方法抽取6名學(xué)生,再從這6名學(xué)生中隨機(jī)抽取2名學(xué)生.記這2名學(xué)生的競賽成績分別為.求事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中, , , ,其中.
⑴ 求證:數(shù)列為等差數(shù)列;
⑵ 設(shè), ,數(shù)列的前項和為,若當(dāng)且為偶數(shù)時, 恒成立,求實數(shù)的取值范圍;
⑶ 設(shè)數(shù)列的前項的和為,試求數(shù)列的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點,AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017安徽蚌埠一模)已知橢圓C:=1(a>b>0)的離心率為,F1,F2是橢圓的兩個焦點,P是橢圓上任意一點,且△PF1F2的周長是8+2.
(1)求橢圓C的方程;
(2)設(shè)圓T:(x-2)2+y2=,過橢圓的上頂點M作圓T的兩條切線交橢圓于E,F兩點,求直線EF的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐PABC中,不能證明AP⊥BC的條件是( )
A. AP⊥PB,AP⊥PC
B. AP⊥PB,BC⊥PB
C. 平面BPC⊥平面APC,BC⊥PC
D. AP⊥平面PBC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com