【題目】將圓 為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的 倍,得到曲線C.
(1)求出C的普通方程;
(2)設(shè)直線l:x+2y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系, 求過(guò)線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

【答案】
(1)解:設(shè)(x1,y1)為圓上的任意一點(diǎn),在已知的變換下變?yōu)镃上的點(diǎn)(x,y),

則有

,∴ ;


(2)解: 解得: ,

所以P1(2,0),P2(0,1),則線段P1P2的中點(diǎn)坐標(biāo)為 ,所求直線的斜率k=2,

于是所求直線方程為

化為極坐標(biāo)方程得:4ρcosθ﹣2ρsinθ﹣3=0,即


【解析】(1)求出C的參數(shù)方程,即可求出C的普通方程;(2)求出P1(2,0),P2(0,1),則線段P1P2的中點(diǎn)坐標(biāo)為 ,所求直線的斜率k=2,可得直線方程,即可求出極坐標(biāo)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}中,a1=1,且a1 , a2 , a4+2成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式及其前n項(xiàng)和Sn;
(2)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為 ,且橢圓C上的點(diǎn)到橢圓右焦點(diǎn)F的最小距離為 .
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)F且不與坐標(biāo)軸平行的直線l與橢圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M, O為坐標(biāo)原點(diǎn),直線 的斜率分別為 若成等差數(shù)列,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市需對(duì)某環(huán)城快速車(chē)道進(jìn)行限速,為了調(diào)研該道路車(chē)速情況,于某個(gè)時(shí)段隨機(jī)對(duì) 輛車(chē)的速度進(jìn)行取樣,測(cè)量的車(chē)速制成如下條形圖:

經(jīng)計(jì)算:樣本的平均值 ,標(biāo)準(zhǔn)差 ,以頻率值作為概率的估計(jì)值.已知車(chē)速過(guò)慢與過(guò)快都被認(rèn)為是需矯正速度,現(xiàn)規(guī)定車(chē)速小于 或車(chē)速大于 是需矯正速度.
(1)從該快速車(chē)道上所有車(chē)輛中任取 個(gè),求該車(chē)輛是需矯正速度的概率;
(2)從樣本中任取 個(gè)車(chē)輛,求這 個(gè)車(chē)輛均是需矯正速度的概率
(3)從該快速車(chē)道上所有車(chē)輛中任取 個(gè),記其中是需矯正速度的個(gè)數(shù)為 ,求 的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地電影院為了了解當(dāng)?shù)赜懊詫?duì)快要上映的一部電影的票價(jià)的看法,進(jìn)行了一次調(diào)研,得到了票價(jià)x(單位:元)與渴望觀影人數(shù)y(單位:萬(wàn)人)的結(jié)果如下表:

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(2)根據(jù)(1)中求出的線性回歸方程,若票價(jià)定為70元,預(yù)測(cè)該電影院渴望觀影人數(shù).附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且 + =
(1)求b的值;
(2)若cosB+ sinB=2,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n(n∈N*)項(xiàng)和為Sn , a3=3,且λSn=anan+1 , 在等比數(shù)列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求數(shù)列{an}及{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{cn}的前n(n∈N*)項(xiàng)和為T(mén)n , 且 ,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)D為不等式組 ,表示的平面區(qū)域,點(diǎn)B(a,b)為第一象限內(nèi)一點(diǎn),若對(duì)于區(qū)域D內(nèi)的任一點(diǎn)A(x,y)都有 成立,則a+b的最大值等于(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2在(0,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案