【題目】已知橢圓 的離心率為 ,且橢圓C上的點(diǎn)到橢圓右焦點(diǎn)F的最小距離為 .
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)F且不與坐標(biāo)軸平行的直線l與橢圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M, O為坐標(biāo)原點(diǎn),直線 的斜率分別為 若成等差數(shù)列,求直線l的方程.

【答案】
(1)解: 點(diǎn)F的坐標(biāo)為 ,由題意可得:

∴橢圓C的方程為


(2)解: 設(shè)點(diǎn) ,又 ,故直線l的方程可設(shè)為 ,

,得 ,

.

成等差數(shù)列,

,即 ,故直線l的方程為


【解析】(1)由橢圓的離心率可得出a與c的關(guān)系,進(jìn)而可得出當(dāng)點(diǎn)位于右頂點(diǎn)時(shí)到橢圓右焦點(diǎn)F的最小距離為:a-c=-1,再結(jié)合橢圓里的關(guān)系求出a和b的值故得到橢圓的方程。(2)先設(shè)出直線l的方程代入橢圓的方程結(jié)合韋達(dá)定理以及中點(diǎn)坐標(biāo)的公式,即可求得MP的方程然后求得x0、y0關(guān)于t的代數(shù)式,再利用直線的斜率成等差數(shù)列得到關(guān)于t的方程,解出其值就求出了斜率的斜率,再利用直線的斜截式求出直線的方程。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解直線的斜率(一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫(xiě)字母k表示,也就是 k = tanα).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市擬在長(zhǎng)為8km的道路OP的一側(cè)修建一條運(yùn)動(dòng)賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)y=Asinωx(A>0,ω>0)x∈[0,4]的圖象,且圖象的最高點(diǎn)為 ;賽道的后一部分為折線段MNP,為保證參賽運(yùn)動(dòng)員的安全,限定∠MNP=120°
(1)求A,ω的值和M,P兩點(diǎn)間的距離;
(2)應(yīng)如何設(shè)計(jì),才能使折線段賽道MNP最長(zhǎng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)F重合,且橢圓的離心率是 ,如圖所示.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)拋物線的準(zhǔn)線與橢圓在第二象限相交于點(diǎn)A,過(guò)點(diǎn)A作拋物線的切線l,l與橢圓的另一個(gè)交點(diǎn)為B,求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在(0,+∞)上的函數(shù)y=f(x)的反函數(shù)為y=f﹣1(x),若g(x)= 為奇函數(shù),則f﹣1(x)=2的解為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y2=4x的內(nèi)接三角形的一個(gè)頂點(diǎn)在原點(diǎn),三邊上的高線都通過(guò)拋物線的焦點(diǎn),求此三角形外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù) 圖象的一部分.為了得到這個(gè)函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點(diǎn)( )

A.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 ,縱坐標(biāo)不變
B.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變
C.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 ,縱坐標(biāo)不變
D.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近期“共享單車(chē)”在全國(guó)多個(gè)城市持續(xù)升溫,某移動(dòng)互聯(lián)網(wǎng)機(jī)構(gòu)通過(guò)對(duì)使用者的調(diào)查得出,現(xiàn)在市場(chǎng)上常見(jiàn)的八個(gè)品牌的“共享單車(chē)”的滿(mǎn)意度指數(shù)如莖葉圖所示:

(Ⅰ)求出這組數(shù)據(jù)的平均數(shù)和中位數(shù);

(Ⅱ)某用戶(hù)從滿(mǎn)意度指數(shù)超過(guò)80的品牌中隨機(jī)選擇兩個(gè)品牌使用,求所選兩個(gè)品牌的滿(mǎn)意度指數(shù)均超過(guò)85的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓 為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的 倍,得到曲線C.
(1)求出C的普通方程;
(2)設(shè)直線l:x+2y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系, 求過(guò)線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(a+2)x+alnx,其中常數(shù)a>0. (Ⅰ)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0 , h(x0))處的切線方程為l:y=g(x),若 >0在D內(nèi)恒成立,則稱(chēng)P為函數(shù)y=h(x)的“類(lèi)對(duì)稱(chēng)點(diǎn)”.當(dāng)a=4時(shí),試問(wèn)y=f(x)是否存在“類(lèi)對(duì)稱(chēng)點(diǎn)”,若存在,請(qǐng)至少求出一個(gè)“類(lèi)對(duì)稱(chēng)點(diǎn)”的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案