【題目】如圖,某市擬在長為8km的道路OP的一側(cè)修建一條運(yùn)動賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)y=Asinωx(A>0,ω>0)x∈[0,4]的圖象,且圖象的最高點(diǎn)為 ;賽道的后一部分為折線段MNP,為保證參賽運(yùn)動員的安全,限定∠MNP=120°
(1)求A,ω的值和M,P兩點(diǎn)間的距離;
(2)應(yīng)如何設(shè)計(jì),才能使折線段賽道MNP最長?

【答案】
(1)解:因?yàn)閳D象的最高點(diǎn)為

所以A= ,

由圖知y=Asinx的周期為T=12,又T= ,所以ω= ,所以y=

所以M(4,3),P(8,0)

|MP|=


(2)解:在△MNP中,∠MNP=120°,故θ∈(0°,60°)

由正弦定理得 ,

所以NP= ,MN=

設(shè)使折線段賽道MNP為L則

L=

=

=

所以當(dāng)角θ=30°時(shí)L的最大值是


【解析】(1)由圖得到A及周期,利用三角函數(shù)的周期公式求出ω,將M的橫坐標(biāo)代入求出M的坐標(biāo),利用兩點(diǎn)距離公式求出|MP|(2)利用三角形的正弦定理求出NP,MN,求出折線段賽道MNP的長,化簡三角函數(shù),利用三角函數(shù)的有界性求出最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點(diǎn)E是BC邊的中點(diǎn),將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.
(Ⅰ)求證:AB⊥平面ADC;
(Ⅱ)若AD=1,二面角C﹣AB﹣D的平面角的正切值為 ,求二面角B﹣AD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足條件:a1=1,a2=r(r>0),且{anan+1}是公比為q(q>0)的等比數(shù)列,設(shè)bn=a2n1+a2n(n=1,2,…).
(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范圍;
(2)求bn ,其中Sn=b1+b2+…+bn;
(3)設(shè)r=219.2﹣1,q= ,求數(shù)列{ }的最大項(xiàng)和最小項(xiàng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,菱形ABCD的邊長為12,∠BAD=60°,AC與BD交于O點(diǎn).將菱形ABCD沿對角線AC折起,得到三棱錐B﹣ACD,點(diǎn)M是棱BC的中點(diǎn),DM=6
(I)求證:平面ODM⊥平面ABC;
(II)求二面角M﹣AD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)判斷: ①某校高三一班和高三二班的人數(shù)分別是m,n,某次測試數(shù)學(xué)平均分分別是a,b,則這兩個(gè)班的數(shù)學(xué)平均分為
②10名工人某天生產(chǎn)同一零件的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有c>a>b;
③從總體中抽取的樣本為 ,則回歸直線 必過點(diǎn)(
④已知ξ服從正態(tài)分布N(0,σ2),且P(﹣2≤ξ≤0)=4,則P(ξ>2)=0.2
其中正確的個(gè)數(shù)有(
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)若點(diǎn)P(1,2),設(shè)圓C與直線l交于點(diǎn)A,B,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(0,+∞)上的函數(shù) ,其中a>0.設(shè)兩曲線y=f(x)與y=g(x)有公共點(diǎn),且在公共點(diǎn)處的切線相同.則b的最大值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中,a1=1,且a1 , a2 , a4+2成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式及其前n項(xiàng)和Sn;
(2)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,且橢圓C上的點(diǎn)到橢圓右焦點(diǎn)F的最小距離為 .
(1)求橢圓C的方程;
(2)過點(diǎn)F且不與坐標(biāo)軸平行的直線l與橢圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M, O為坐標(biāo)原點(diǎn),直線 的斜率分別為 若成等差數(shù)列,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案