【題目】已知函數,.
(1)求 函數的單調區(qū)間;
(2)定義:對于函數,若存在,使成立,則稱為函數的不動點. 如果函數存在兩個不同的不動點,求實數的取值范圍.
【答案】(1)當時,的單調遞增區(qū)間為;當時,的單調遞增區(qū)間為,單調遞減區(qū)間為 ;(2).
【解析】
(1)先確定函數的定義域,再求導,討論的取值,得到函數的單調區(qū)間;
(2)依題意可得,存在兩個不動點,所以方程有兩個實數根,即有兩個解, 令,利用導數研究函數的單調性、極值,即可求出參數的取值范圍;
解:(1)的定義域為,
對于函數,
①當時,在恒成立.
在恒成立.
在為增函數;
② 當時,由,得;
由,得;
在為增函數,在減函數.
綜上,當時,的單調遞增區(qū)間為
當時,的單調遞增區(qū)間為,單調遞減區(qū)間為
(2),
存在兩個不動點,方程有兩個實數根,即有兩個解,
令,,
令,得,
當時,單調遞減;
當時,單調遞增;
,
設,則,,即時,
將兩邊取指數,則
當時,
當時 ,
當時,有兩個不同的不動點
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的參數方程為(為參數),將曲線上各點縱坐標伸長到原來的2倍(橫坐標不變)得到曲線,以坐標原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(1)寫出的極坐標方程與直線的直角坐標方程;
(2)曲線上是否存在不同的兩點,(以上兩點坐標均為極坐標,,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場在促銷期間規(guī)定:商場內所有商品按標價的出售,當顧客在商場內消費一定金額后,按如下方案獲得相應金額的獎券:
消費金額(元)的范圍 | … | ||||
獲得獎券的金額(元) | 30 | 60 | 100 | 130 | … |
根據上述促銷方法,顧客在該商場購物可以獲得雙重優(yōu)惠,例如:購買標價為400元的商品,則消費金額為320元,獲得的優(yōu)惠額為:元,設購買商品得到的優(yōu)惠率=(購買商品獲得的優(yōu)惠額)/(商品標價),試問:
(1)若購買一件標價為1000元的商品,顧客得到的優(yōu)惠率是多少?
(2)對于標價在(元)內的商品,顧客購買標價為多少元的商品,可得到不小于的優(yōu)惠率?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一個直徑為1的小圓沿著直徑為2的大圓內壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點,那么,當小圓這樣滾過大圓內壁的一周,點M,N在大圓內所繪出的圖形大致是( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
已知拋物線的焦點為,為上異于原點的任意一點,過點的直線交于另一點,交軸的正半軸于點,且有.當點的橫坐標為時,為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且和有且只有一個公共點,
(ⅰ)證明直線過定點,并求出定點坐標;
(ⅱ)的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設a>0,0≤x<2π,若函數y=cos2x-asinx+b的最大值為0,最小值為-4,試求a與b的值,并求使y取得最大值和最小值時的x值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某機械零件的幾何結構,該幾何體是由兩個相同的直四棱柱組合而成的,且前后、左右、上下均對稱,每個四棱柱的底面都是邊長為2的正方形,高為4,且兩個四棱柱的側棱互相垂直.則這個幾何體有________個面,其體積為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com