【題目】若養(yǎng)殖場(chǎng)每個(gè)月生豬的死亡率不超過,則該養(yǎng)殖場(chǎng)考核為合格,該養(yǎng)殖場(chǎng)在2019年1月到8月養(yǎng)殖生豬的相關(guān)數(shù)據(jù)如下表所示:
月份 | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 |
月養(yǎng)殖量/千只3 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 12 |
月利潤/十萬元 | 3.6 | 4.1 | 4.4 | 5.2 | 6.2 | 7.5 | 7.9 | 9.1 |
生豬死亡數(shù)/只 | 29 | 37 | 49 | 53 | 77 | 98 | 126 | 145 |
(1)從該養(yǎng)殖場(chǎng)2019年2月到6月這5個(gè)月中任意選取3個(gè)月,求恰好有2個(gè)月考核獲得合格的概率;
(2)根據(jù)1月到8月的數(shù)據(jù),求出月利潤y(十萬元)關(guān)于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001).
(3)預(yù)計(jì)在今后的養(yǎng)殖中,月利潤與月養(yǎng)殖量仍然服從(2)中的關(guān)系,若9月份的養(yǎng)殖量為1.5萬只,試估計(jì):該月利潤約為多少萬元?
附:線性回歸方程中斜率和截距用最小二乘法估計(jì)計(jì)算公式如下:,
參考數(shù)據(jù):.
【答案】(1);(2);(3)利潤約為111.2萬元.
【解析】
(1)首先列出基本事件,然后根據(jù)古典概型求出恰好兩個(gè)月合格的概率;
(2)首先求出利潤y和養(yǎng)殖量x的平均值,然后根據(jù)公式求出線性回歸方程中的斜率和截距即可求出線性回歸方程;
(3)根據(jù)線性回歸方程代入9月份的數(shù)據(jù)即可求出9月利潤.
(1)2月到6月中,合格的月份為2,3,4月份,
則5個(gè)月份任意選取3個(gè)月份的基本事件有
,,,,,,
,,,,共計(jì)10個(gè),
故恰好有兩個(gè)月考核合格的概率為;
(2),,
,
,
故;
(3)當(dāng)千只,
(十萬元)(萬元),
故9月份的利潤約為111.2萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖沖之是中國南北朝時(shí)期的數(shù)學(xué)家和天文學(xué)家,他在數(shù)學(xué)方面的突出貢獻(xiàn)是將圓周率的精確度計(jì)算到小數(shù)點(diǎn)后第位,也就是和之間,這一成就比歐洲早了多年,我校“愛數(shù)學(xué)”社團(tuán)的同學(xué),在祖沖之研究圓周率的方法啟發(fā)下,自制了一套計(jì)算圓周率的數(shù)學(xué)實(shí)驗(yàn)?zāi)P?/span>.該模型三視圖如圖所示,模型內(nèi)置一個(gè)與其各個(gè)面都相切的球,該模型及其內(nèi)球在同一方向有開口裝置.實(shí)驗(yàn)的時(shí)候,同學(xué)們隨機(jī)往模型中投擲大小相等,形狀相同的玻璃球,通過計(jì)算落在球內(nèi)的玻璃球數(shù)量,來估算圓周率的近似值.已知某次實(shí)驗(yàn)中,某同學(xué)一次投擲了個(gè)玻璃球,請(qǐng)你根據(jù)祖沖之的圓周率精確度(取小數(shù)點(diǎn)后三位)估算落在球內(nèi)的玻璃球數(shù)量( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線、交于、兩點(diǎn),是曲線上的動(dòng)點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:設(shè)是正整數(shù),如果對(duì)任意正整數(shù),當(dāng)時(shí),即有,那么稱數(shù)列的前項(xiàng)可被數(shù)列的第項(xiàng)替換.已知數(shù)列的前項(xiàng)和是,數(shù)列是公比為1的等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式(用,表示);
(2)已知,數(shù)列的前項(xiàng)和滿足;
①求證:數(shù)列為等比數(shù)列,并求的通項(xiàng)公式;
②若數(shù)列的前可被數(shù)列的前項(xiàng)替換,且的最大值為8,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸長為,離心率為.
(1)求橢圓的方程;
(2)求過橢圓的右焦點(diǎn)且傾斜角為135°的直線,被橢圓截得的弦長;
(3)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二年級(jí)的數(shù)學(xué)興趣小組釆取抽簽方式隨機(jī)分成甲、乙兩個(gè)小組進(jìn)行數(shù)學(xué)解題對(duì)抗賽.每組各20人,根據(jù)各位學(xué)生在第三次數(shù)學(xué)解題對(duì)抗賽中的解題時(shí)間(單位:秒)繪制了如下莖葉圖:
(1)請(qǐng)?jiān)u出第三次數(shù)學(xué)對(duì)抗賽的優(yōu)勝小組,并求出這40位學(xué)生完成第三次數(shù)學(xué)解題對(duì)抗賽所需時(shí)間的中位數(shù);
(2)對(duì)于(1)中的中位數(shù),根據(jù)這40位學(xué)生完成第三次數(shù)學(xué)對(duì)抗賽所需時(shí)間超過和不超過的人數(shù),完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為甲、乙兩個(gè)小組在此次的數(shù)學(xué)對(duì)抗賽中的成績有差異?
超過 | 不超過 | 總計(jì) | |
甲組 | |||
乙組 | |||
總計(jì) |
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸的極坐標(biāo)中,圓的方程為.
(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;
(2)若點(diǎn)的坐標(biāo)為,圓與直線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知圓與直線相切,點(diǎn)A為圓上一動(dòng)點(diǎn),軸于點(diǎn)N,且動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)P,Q是曲線C上兩動(dòng)點(diǎn),線段的中點(diǎn)為T,,的斜率分別為,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一個(gè)動(dòng)圓經(jīng)過點(diǎn)且與直線相切,設(shè)該動(dòng)圓圓心的軌跡為曲線.
(1)求曲線的方程;
(2)過點(diǎn)作直線交曲線于,兩點(diǎn),問曲線上是否存在一個(gè)定點(diǎn),使得點(diǎn)在以為直徑的圓上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com