【題目】定義:設(shè)是正整數(shù),如果對(duì)任意正整數(shù),當(dāng)時(shí),即有,那么稱(chēng)數(shù)列的前項(xiàng)可被數(shù)列的第項(xiàng)替換.已知數(shù)列的前項(xiàng)和是,數(shù)列是公比為1的等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式(用,表示);
(2)已知,數(shù)列的前項(xiàng)和滿(mǎn)足;
①求證:數(shù)列為等比數(shù)列,并求的通項(xiàng)公式;
②若數(shù)列的前可被數(shù)列的前項(xiàng)替換,且的最大值為8,求的取值范圍.
【答案】(1);(2)①證明見(jiàn)解析,,②
【解析】
(1)依題意可得,再利用計(jì)算可得;
(2)①由,得到,即可得證,還需計(jì)算;
②由題意知對(duì)一切恒成立,即,令,判斷的單調(diào)性,即可得到的取值范圍.
(1)∵是公差為1的等差數(shù)列且首項(xiàng)為,
∴,
∴,
當(dāng)時(shí),,也滿(mǎn)足上式,
∴.
(2)①∵ ①
當(dāng)時(shí), ②
①-②得,
在①式令,得,
∴,
故,
∴為等比數(shù)列,.
②由題意知對(duì)一切恒成立,
∴,即,
令,
,
∴單調(diào)遞增,
∴.
另一方面對(duì)一切且恒成立,
即,,,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)構(gòu)對(duì)某市工薪階層的收入情況與超前消費(fèi)行為進(jìn)行調(diào)查,隨機(jī)抽查了200人,將他們的月收入(單位:百元)頻數(shù)分布及超前消費(fèi)的認(rèn)同人數(shù)整理得到如下表格:
月收入(百元) | ||||||
頻數(shù) | 20 | 40 | 60 | 40 | 20 | 20 |
認(rèn)同超前消費(fèi)的人數(shù) | 8 | 16 | 28 | 21 | 13 | 16 |
(1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并回答是否有99%的把握認(rèn)為當(dāng)月收入以8000元為分界點(diǎn)時(shí),該市的工薪階層對(duì)“超前消費(fèi)”的態(tài)度有差異;
月收入不低于8000元 | 月收入低于8000元 | 總計(jì) | |
認(rèn)同 | |||
不認(rèn)同 | |||
總計(jì) |
(2)若從月收入在的被調(diào)查對(duì)象中隨機(jī)選取2人進(jìn)行調(diào)查,求至少有1個(gè)人不認(rèn)同“超前消費(fèi)”的概率.
參考公式:(其中).
附表:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)討論在上的單調(diào)性;
(2)當(dāng)時(shí),若存在正實(shí)數(shù),使得對(duì),都有,求的取值范圍..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn),,給出下列曲線方程:(1);(2);(3);(4),在曲線上存在點(diǎn)滿(mǎn)足的所有曲線是( )
A.(1)(2)(3)(4)B.(2)(3)
C.(1)(4)D.(2)(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn),,,動(dòng)點(diǎn)滿(mǎn)足.
(1)求動(dòng)點(diǎn)的軌跡方程,并說(shuō)明方程表示的曲線類(lèi)型;
(2)當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高二年級(jí)某班的數(shù)學(xué)課外活動(dòng)小組有6名男生,4名女生,從中選出4人參加數(shù)學(xué)競(jìng)賽考試,用X表示其中男生的人數(shù).
(1)請(qǐng)列出X的分布列;
(2)根據(jù)你所列的分布列求選出的4人中至少有3名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若養(yǎng)殖場(chǎng)每個(gè)月生豬的死亡率不超過(guò),則該養(yǎng)殖場(chǎng)考核為合格,該養(yǎng)殖場(chǎng)在2019年1月到8月養(yǎng)殖生豬的相關(guān)數(shù)據(jù)如下表所示:
月份 | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 |
月養(yǎng)殖量/千只3 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 12 |
月利潤(rùn)/十萬(wàn)元 | 3.6 | 4.1 | 4.4 | 5.2 | 6.2 | 7.5 | 7.9 | 9.1 |
生豬死亡數(shù)/只 | 29 | 37 | 49 | 53 | 77 | 98 | 126 | 145 |
(1)從該養(yǎng)殖場(chǎng)2019年2月到6月這5個(gè)月中任意選取3個(gè)月,求恰好有2個(gè)月考核獲得合格的概率;
(2)根據(jù)1月到8月的數(shù)據(jù),求出月利潤(rùn)y(十萬(wàn)元)關(guān)于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001).
(3)預(yù)計(jì)在今后的養(yǎng)殖中,月利潤(rùn)與月養(yǎng)殖量仍然服從(2)中的關(guān)系,若9月份的養(yǎng)殖量為1.5萬(wàn)只,試估計(jì):該月利潤(rùn)約為多少萬(wàn)元?
附:線性回歸方程中斜率和截距用最小二乘法估計(jì)計(jì)算公式如下:,
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求在上的最大值和最小值:
(2)若,恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)M是棱長(zhǎng)為2的正方體ABCD-A1B1C1D1的棱AD的中點(diǎn),點(diǎn)P在面BCC1B1所在的平面內(nèi),若平面D1PM分別與平面ABCD和平面BCC1B1所成的銳二面角相等,則點(diǎn)P到點(diǎn)C1的最短距離是( )
A.B.C.1D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com