【題目】已知 =(cosx,﹣ ), =(sinx+cosx,1),f(x)= ,
(1)若0<α< ,sinα= ,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

【答案】
(1)解:由 ,則α= ,

=(cosx,﹣ ), =(sinx+cosx,1),

則f(x)= =cosxsinx+cos2x﹣ = sin2x+ cos2x

= sin(2x+ ),

即有f(α)= sin(2× + )= = ;


(2)解:由(1)可得,f(x)= sin(2x+ ),

則f(x)的最小正周期T= =π;

,

解得

則f(x)的單調(diào)增區(qū)間為


【解析】(1)由條件可得α= ,再由向量的數(shù)量積的坐標(biāo)表示和二倍角公式及兩角和的正弦公式,化簡f(x),再代入計算即可得到所求值;(2)運用正弦函數(shù)的周期公式和增區(qū)間,解不等式即可得到最小正周期和所求增區(qū)間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠有4臺大型機(jī)器,在一個月中,一臺機(jī)器至多出現(xiàn)1次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需1名工人進(jìn)行維修,每臺機(jī)器出現(xiàn)故障需要維修的概率為.

(1)若出現(xiàn)故障的機(jī)器臺數(shù)為,求的分布列;

(2) 該廠至少有多少名工人才能保證每臺機(jī)器在任何時刻同時出現(xiàn)故障時能及時進(jìn)行維修的概率不少于90%?

(3)已知一名工人每月只有維修1臺機(jī)器的能力,每月需支付給每位工人1萬元的工資,每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時維修,就使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤,若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將五個1,五個2,五個3,五個4,五個5共25個數(shù)填入一個5行5列的表格內(nèi)(每格填入一個數(shù)),使得同一行中任何兩數(shù)之差的絕對值不超過2,考查每行中五個數(shù)之和,記這五個和的最小值為,則的最大值為( )

A. B. 9 C. 10 D. 11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列具有性質(zhì):對任意, , 兩數(shù)至少有一個屬于

Ⅰ)分別判斷數(shù)集是否具有性質(zhì),并說明理由.

Ⅱ)求證:

Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是以為中心的菱形, 底面, , 上一點,且.

1)證明: 平面;

2)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(2cosωx,cos2ωx), =(sinωx,1)(其中ω>0),令f(x)= ,且f(x)的最小正周期為π.
(1)求 的值;
(2)寫出 上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線軸交于、兩點.

Ⅰ)若點、分別是雙曲線的虛軸、實軸的一個端點,試在平面上找兩點、,使得雙曲線上任意一點到、這兩點距離差的絕對值是定值.

Ⅱ)若以原點為圓心的圓截直線所得弦長是,求圓的方程以及這條弦的中點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,直線(其中)與曲線相交于兩點.

Ⅰ)若,試判斷曲線的形狀.

Ⅱ)若,以線段、為鄰邊作平行四邊形,其中頂點在曲線上, 為坐標(biāo)原點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4內(nèi)有解,則a的取值范圍

查看答案和解析>>

同步練習(xí)冊答案