【題目】若關(guān)于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4內(nèi)有解,則a的取值范圍

【答案】a<﹣4
【解析】解:原不等式2x2﹣8x﹣4﹣a>0可化為:a<2x2﹣8x﹣4,
只須a小于y=2x2﹣8x﹣4在1≤x≤4內(nèi)的最大值時(shí)即可,
∵y=2x2﹣8x﹣4=2(x﹣2)2﹣12
∴y=2x2﹣8x﹣4在1≤x≤4內(nèi)的最大值是﹣4.
則有:a<﹣4.
所以答案是:a<﹣4
【考點(diǎn)精析】通過靈活運(yùn)用解一元二次不等式,掌握求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =(cosx,﹣ ), =(sinx+cosx,1),f(x)=
(1)若0<α< ,sinα= ,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面是平行四邊形, 平面, 的中點(diǎn), 的中點(diǎn).

(1)求證: 平面;

(2),求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中, , 為邊的中點(diǎn),將沿直線翻轉(zhuǎn)成.若為線段的中點(diǎn),則在翻折過程中:

是定值;②點(diǎn)在某個(gè)球面上運(yùn)動(dòng);

③存在某個(gè)位置,使;④存在某個(gè)位置,使平面.

其中正確的命題是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,ACCDAB=1, ,sin∠BCD.

(1)求BC邊的長(zhǎng);

(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“隨機(jī)模擬方法”計(jì)算曲線與直線, 所圍成的曲邊三角形的面積時(shí),用計(jì)算機(jī)分別產(chǎn)生了10個(gè)在區(qū)間上的均勻隨機(jī)數(shù)和10個(gè)區(qū)間上的均勻隨機(jī)數(shù) ),其數(shù)據(jù)如下表的前兩行.

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

0.90

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

由此可得這個(gè)曲邊三角形面積的一個(gè)近似值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn , 且滿足a1=1,an+1=2 +1,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)是否存在正整數(shù)k,使ak , S2k1 , a4k成等比數(shù)列?若存在,求k的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)為常數(shù)),為自然對(duì)數(shù)的底數(shù).

(1)當(dāng)時(shí),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),求使得成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]

(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

(2)試估計(jì)該公司投入萬元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

(3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案