已知數(shù)列為遞增等差數(shù)列,且是方程的兩根.?dāng)?shù)列為等比數(shù)列,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和

(Ⅰ);(Ⅱ).

解析試題分析:(Ⅰ)解方程可得:,代入等差數(shù)列的通項(xiàng)公式可得其公差和首項(xiàng),從而得數(shù)列的通項(xiàng)公式;再由求得的公比和首項(xiàng),從而求得的通項(xiàng)公式.
(Ⅱ)凡是由等差數(shù)列與等比數(shù)列的積構(gòu)成的數(shù)列,求其和都用錯(cuò)位相減法.本題中求數(shù)列的前項(xiàng)和就用錯(cuò)位相消法.
試題解析:(Ⅰ)解方程得:.
 是方程的兩根,且數(shù)列為遞增等差數(shù)列,
所以 .
,得,所以,.
(Ⅱ) ,所以
………………………………①
……………………………②
①-②得:

所以.
考點(diǎn):1、等差數(shù)列等比數(shù)列的通項(xiàng)公式;2、錯(cuò)位相消法求和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列{an}中,a1=1,當(dāng)時(shí),其前n項(xiàng)和滿足.
(Ⅰ)求Sn的表達(dá)式;
(Ⅱ)設(shè),數(shù)列{bn}的前n項(xiàng)和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)等比數(shù)列,若,求數(shù)列的前項(xiàng)和
(Ⅲ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式
(2)令,求數(shù)列前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足,.
(I)求數(shù)列的通項(xiàng)公式;
(II)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:,的前n項(xiàng)和為
(1)求;
(2)令,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)為正數(shù)的等差數(shù)列滿足,且).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)的和 ,求數(shù)列的通項(xiàng)公式. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知遞增等差數(shù)列前3項(xiàng)的和為,前3項(xiàng)的積為8,
(1)求等差數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和。

查看答案和解析>>

同步練習(xí)冊答案