已知x,y∈R,i為虛數(shù)單位,且x+yi=
3+4i
1+2i
,則x+y=( 。
A、
7
5
B、
9
5
C、
11
5
D、
13
5
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,可求得x+yi=
3+4i
1+2i
=
11-2i
5
,x,y∈R,從而可得答案.
解答: 解:∵x+yi=
3+4i
1+2i
=
(3+4i)(1-2i)
(1+2i)(1-2i)
=
11-2i
5
,x,y∈R,
∴x=
11
5
,y=-
2
5
,
∴x+y=
9
5

故選:B.
點(diǎn)評(píng):本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,利用復(fù)數(shù)相等求得x、y的值是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn),極軸與x軸的正半軸重合,且單位相同,曲線C的極坐標(biāo)方程為ρ=2cosθ,則該曲線的直角坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題P:點(diǎn)A(sinα,cosα)與B(a2,2)在直線x+y-
3
=0的兩側(cè),命題Q:函數(shù)f(x)=ln|x|在(-∞,0)上單調(diào)遞減,則下列命題是真命題的是
 

①¬P;   ②P∨Q;   ③P∧Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

填空:
(1)a=
1
2
,b=
1
3
,則
3a2-ab
3a2+5ab-2b2
=
 

(2)若x2+xy-2y2=0,則
x2+3xy+y2
x2+y2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=x2的圖象與直線x=1、x=2和x軸所圍成的封閉圖形的面積是(  )
A、3
B、
7
3
C、2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x+y≥2
x-y≤2
0≤y≤3
,則z=2x-y的取值范圍是(  )
A、[1,7]
B、[-5,4]
C、[-5,7]
D、[4,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果復(fù)數(shù)z滿足(2+i)z=5i(i是虛數(shù)單位),則z(  )
A、1+2iB、-1+2i
C、2+iD、1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x)=cos(
π
2
+x)sin(
2
+x),給出下列四個(gè)結(jié)論:
①函數(shù)f(x)的最小正周期為2π
②函數(shù)f(x)在[
π
6
,
π
2
]上的值域是[
3
4
,
1
2
]
③函數(shù)f(x)在[
π
4
4
]上是減函數(shù)
④函數(shù)f(x)的圖象關(guān)于點(diǎn)(-
π
2
,0)對(duì)稱;
其中正確結(jié)論的個(gè)數(shù)是( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn),一焦點(diǎn)為F(0,
50
)的橢圓被直線l:y=3x-2截得的弦的中點(diǎn)橫坐標(biāo)為
1
2

(1)求此橢圓的方程;
(2)過定點(diǎn)M(0,9)的直線與橢圓有交點(diǎn),求直線的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案