已知|
a
|=2,且(
a
+
b
)⊥
a
,則
a
b
的值是
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:由(
a
+
b
)⊥
a
,可得(
a
+
b
)•
a
=
a
2
+
a
b
=0,即可得出.
解答: 解:∵|
a
|=2,且(
a
+
b
)⊥
a
,
(
a
+
b
)•
a
=
a
2
+
a
b
=0,
a
b
=-
a
2
=-22=-4.
故答案為:-4.
點(diǎn)評(píng):本題考查了向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z滿足(1-i)z=2i,則z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}是等差數(shù)列,首項(xiàng)a1>0,a2003+a2004>0,a2003•a2004<0,則使前n項(xiàng)和Sn>0成立的最大自然數(shù)n是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,若M,N分別是BB1,CC1的中點(diǎn),則異面直線AM與A1N所成的角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,給出以下結(jié)論:
①DB1⊥平面ACD1
②AD1∥平面BCC1;
③AD⊥平面D1DB;
④平面ACD1⊥平面B1D1D;
⑤AB與DB1所成的角為45°.
其中所有正確結(jié)論的序號(hào)為
 
(請(qǐng)把正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校高一,高二,高三年級(jí)的學(xué)生人數(shù)之比是2:3:4,現(xiàn)用分層抽樣的方法從該校高中三個(gè)年級(jí)的學(xué)生中抽取容量為36的樣本,則應(yīng)從高二年級(jí)抽取
 
名學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+
π
3
)(?>0)的最小正周期是π,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+2x+sinx+1
x2+1
的最大值為M,最小值為m,則M+m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的有
 

①已知A,B是橢圓
x2
3
+
y2
4
=1的左右兩個(gè)頂點(diǎn),P是該橢圓上異于A,B的任一點(diǎn),則KAP•KBP=-
3
4

②已知雙曲線x2-
y2
3
=1的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線右支上一點(diǎn),則
PA1
PF2
的最小值為-2.
③若拋物線C:x2=4y的焦點(diǎn)為F,拋物線上一點(diǎn)Q(2,1)和拋物線內(nèi)一點(diǎn)R(2,m)(m>1),過點(diǎn)Q作拋物線的切線l1,直線l2過點(diǎn)Q且與l1垂直,則l2平分∠RQF;
④已知函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0,xf′(x)-f(x)>0(x>0),則不等式f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案