14.已知橢圓曲線方程為${x^2}+\frac{y^2}{n}=1(n∈R)$,兩焦點(diǎn)分別為F1,F(xiàn)2
(1)若n=-1,過左焦點(diǎn)為F1且斜率為$\sqrt{3}$的直線交圓錐曲線于點(diǎn)A,B,求△ABF2的周長.
(2)若n=4,P圓錐曲線上一點(diǎn),求PF1•PF2的最大值和最小值.

分析 (1)求出|AB|,利用雙曲線的定義,即可求△ABF2的周長.
(2)若n=4,P圓錐曲線上一點(diǎn),PF1+PF2=4,設(shè)PF1=x,x∈[2-$\sqrt{3}$,2+$\sqrt{3}$],PF1•PF2=x(4-x)=-(x-2)2+4求,即可PF1•PF2的最大值和最小值.

解答 解:(1)若n=1,方程為x2-y2=1,則直線AB的方程為y=$\sqrt{3}$(x+$\sqrt{2}$).
聯(lián)立x2-y2=1,可得2x2+6$\sqrt{2}$x+7=0,∴|AB|=$\sqrt{1+3}•\sqrt{(-3\sqrt{2})^{2}-4×\frac{7}{2}}$=4,
據(jù)雙曲線定義,2a=|AF2|-|AF1|=|BF2|-|BF1|,
∴4a=|AF2|+|BF2|-(|AF1|+|BF1|)=4,
∴|AB|+|AF2|+|BF2|=12;
(2)若n=4,方程為${x}^{2}+\frac{{y}^{2}}{4}$=1,
∴PF1+PF2=4,
設(shè)PF1=x,x∈[2-$\sqrt{3}$,2+$\sqrt{3}$],
∴PF1•PF2=x(4-x)=-(x-2)2+4,
∴PF1•PF2的最大值為4,最小值為1.

點(diǎn)評(píng) 本小題主要考查橢圓的定義,雙曲線的定義、雙曲線的簡單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=$\frac{{{{(x-1)}^0}}}{{\sqrt{2-x}}}$的定義域是{x|x<2且x≠1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,D為BC邊上的中點(diǎn),P0是邊AB上的一個(gè)定點(diǎn),P0B=$\frac{1}{4}$AB,且對(duì)于AB上任一點(diǎn)P,恒有$\overrightarrow{PB}$•$\overrightarrow{PC}$≥$\overrightarrow{{P}_{0}B}$•$\overrightarrow{{P}_{0}C}$,則下列結(jié)論中正確的是①②⑤(填上所有正確命題的序號(hào)).
①當(dāng)P與A,B不重合時(shí),$\overrightarrow{PB}$+$\overrightarrow{PC}$與$\overrightarrow{PD}$共線;
②$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overline{P{D}_{2}}$-$\overrightarrow{D{B}_{2}}$;
③存在點(diǎn)P,使|$\overrightarrow{PD}$|<|$\overrightarrow{{P}_{0}D}$|;
④$\overrightarrow{{P}_{0}C}$•$\overrightarrow{AB}$=0;
⑤AC=BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)$[2,\frac{1}{4}]$,則其解析式是f(x)=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.分解下列因式
(1)5x2+6xy-8y2
(2)x2+2x-15-ax-5a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于直線y=x對(duì)稱,且z1=3+2i,則$\frac{z_1}{z_2}$=( 。
A.$\frac{12}{13}+\frac{5}{13}i$B.$-\frac{12}{13}+\frac{5}{13}i$C.$-\frac{12}{13}-\frac{5}{13}i$D.$\frac{12}{13}-\frac{5}{13}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在正三棱錐S-ABC中,AB=BC=AC=4,D是AB中點(diǎn),且SD與BC所成角的余弦值為$\frac{{\sqrt{3}}}{6}$,則三棱錐S-ABC外接圓的表面積為24π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)在上是奇函數(shù),且f(x)在上的最大值為m,則函數(shù)F(x)=f(x)+3在上的最大值與最小值之和為( 。
A.2m+3B.2m+6C.6D.6-2m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.“牟合方蓋”是我國古代數(shù)學(xué)家劉徽在研究球的體積的過程中構(gòu)造的一個(gè)和諧優(yōu)美的幾何體.它由完全相同的四個(gè)曲面構(gòu)成,相對(duì)的兩個(gè)曲面在同一個(gè)圓柱的側(cè)面上,好似兩個(gè)扣合(牟合)在一起的方形傘(方蓋).其直觀圖如下左圖,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.其實(shí)際直觀圖中四邊形不存在,當(dāng)其正視圖和側(cè)視圖完全相同時(shí),它的正視圖和俯視圖分別可能是( 。
A.a,bB.a,cC.c,bD.b,d

查看答案和解析>>

同步練習(xí)冊(cè)答案