【題目】為了了解某地區(qū)心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)地對(duì)入院

的50人進(jìn)行了問(wèn)卷調(diào)查,得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計(jì)

20

5

25

10

15

25

合計(jì)

30

20

50

(1)用分層抽樣的方法在患心肺疾病的人群中抽取6人,其中男性抽多少人?

(2)在上述抽取的6人中選2人,求恰有一名女性的概率;

(3)為了研究心肺疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量,判斷是否有的把握認(rèn)為

患心肺疾病與性別有關(guān)?

右面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:

【答案】(1) 4人;(2) ;(3) 有99.5%的把握認(rèn)為是否患心肺疾病是與性別有關(guān)系的.

【解析】試題分析:(1)根據(jù)分層抽樣的方法,在患心肺疾病的人群中抽6人,先計(jì)算了抽取比例,再根據(jù)比例即可求出男性應(yīng)該抽取人數(shù).

(2)在上述抽取的6名學(xué)生中,女性的有2人,男性4人.女性2人記A,B;男性4人為c,d,e,f,列出其一切可能的結(jié)果組成的基本事件個(gè)數(shù),通過(guò)列舉得到滿足條件事件數(shù),求出概率.

(3)根據(jù)所給的公式,代入數(shù)據(jù)求出臨界值,把求得的結(jié)果同臨界值表進(jìn)行比較,看出有多大的把握認(rèn)為心肺疾病與性別有關(guān).

試題解析:

(1)根據(jù)題意,在患心肺疾病的人群中抽6人,則抽取比例為=,

又由在患心肺疾病的人群有男生20人,

則男性應(yīng)該抽取20×=4人,

(2)根據(jù)題意,在上述抽取的6名學(xué)生中,女性的有2人,男性4人.女性2人記A,B;男性4人為c,d,e,f,

則從6名學(xué)生任取2名的所有情況為:(A,B)、(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(B,d)、(B,e)、(B,f)、(c,d)、(c,e)、(c,f)、(d,e)、(d,f)、(e,f)共15種情況,

其中恰有1名女生情況有:(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(B,d)、(B,e)、(B,f),共8種情況,

故上述抽取的6人中選2人,恰有一名女性的概率概率為;

(3))K2=≈8.333,且P(k2≥7.879)=0.005=0.5%,

那么,我們有99.5%的把握認(rèn)為是否患心肺疾病是與性別有關(guān)系的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為做好2022年北京冬季奧運(yùn)會(huì)的宣傳工作,組委會(huì)計(jì)劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機(jī)調(diào)查了1000名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合計(jì)

男大學(xué)生

610

女大學(xué)生

90

合計(jì)

800

(1) 根據(jù)題意完成表格;

(2) 是否有的把握認(rèn)為愿意做志愿者工作與性別有關(guān)?

參考公式及數(shù)據(jù): ,其中.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校射擊隊(duì)的某一選手射擊一次,其命中環(huán)數(shù)的概率如表:

命中環(huán)數(shù)

10環(huán)

9環(huán)

8環(huán)

7環(huán)

概率

0.32

0.28

0.18

0.12

求該選手射擊一次,

(1)命中9環(huán)或10環(huán)的概率.

(2)至少命中8環(huán)的概率.

(3)命中不足8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)橢圓 ,長(zhǎng)軸的右端點(diǎn)與拋物線 的焦點(diǎn)重合,且橢圓的離心率是

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)作直線交拋物線, 兩點(diǎn),過(guò)且與直線垂直的直線交橢圓于另一點(diǎn),求面積的最小值,以及取到最小值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在高中學(xué)習(xí)過(guò)程中,同學(xué)們經(jīng)常這樣說(shuō):“數(shù)學(xué)物理不分家,如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒(méi)什么問(wèn)題!蹦嘲噌槍(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論,F(xiàn)從該班隨機(jī)抽取5位學(xué)生在一次考試中的數(shù)學(xué)和物理成績(jī),如下表:

(1)求數(shù)學(xué)成績(jī)y對(duì)物理成績(jī)x的線性回歸方程。若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);

(2)要從抽取的這5位學(xué)生中隨機(jī)抽取2位參加一項(xiàng)知識(shí)競(jìng)賽,求選中的學(xué)生的數(shù)學(xué)成績(jī)至少有一位高于120分的概率。(參考公式: 參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)證明: 當(dāng)時(shí), .

(Ⅱ)證明: 當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某項(xiàng)科研活動(dòng)共進(jìn)行了5次試驗(yàn),其數(shù)據(jù)如下表所示:

特征量

第1次

第2次

第3次

第4次

第5次

555

559

551

563

552

601

605

597

599

598

(1)從5次特征量的試驗(yàn)數(shù)據(jù)中隨機(jī)地抽取兩個(gè)數(shù)據(jù),求至少有一個(gè)大于600的概率;

(2)求特征量關(guān)于的線性回歸方程;并預(yù)測(cè)當(dāng)特征量為570時(shí)特征量的值.

(附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), , .

(1)當(dāng)時(shí),求的極值;

(2)令,求函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 分別是其左、右焦點(diǎn),以線段為直徑的圓與橢圓有且僅有兩個(gè)交點(diǎn).

(1)求橢圓的方程;

(2)設(shè)過(guò)點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),點(diǎn)橫坐標(biāo)的取值范圍是,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案