【題目】已知函數(shù),曲線在點處的切線方程為.
(1)求的值;
(2)求在上的單調(diào)區(qū)間;
(3)求在上的最大值.
【答案】(1)a=2,b=-4;(2)的增區(qū)間為 ;減區(qū)間為 ;(3)13.
【解析】
(1)先對f(x)求導(dǎo),把x=1代入導(dǎo)數(shù)式即可解出曲線在 處的斜率k;把x=1代入原函數(shù)即可解出切點縱坐標(biāo),建立一個關(guān)于a和b的二元一次方程組,解方程可得a,b的值;
(2)求出f(x)的導(dǎo)數(shù),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間;
(3)分別求出f(x)在區(qū)間[﹣3,1]上的極值和區(qū)間端點處的函數(shù)值,比較大小找出最大的值,即為函數(shù)在該閉區(qū)間上的最大值。
(1) 函數(shù) 的導(dǎo)數(shù)為 ,
曲線 在點 處的切線斜率為 ,
切點為 ,
由切線方程為 ,可得 , ,
解得 .
(2) 函數(shù) 的導(dǎo)數(shù) ,由 ,可得 或 ;由 ,可得 .則 f(x) 的增區(qū)間為 , ;減區(qū)間為 .
(3) 由(2)可得 f(x) 的兩極值點-2, ,
, ,
又 , .
故 y=f(x) 在 上的最大值為 13.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于分鐘的觀眾稱為體育迷.
(1)以頻率為概率,若從這名觀眾中隨機(jī)抽取名進(jìn)行調(diào)查,求這名觀眾中體育迷人數(shù)的分布列;
(2)若抽取人中有女性人,其中女體育迷有人,完成答題卡中的列聯(lián)表并判斷能否在犯錯概率不超過的前提下認(rèn)為是體育迷與性別有關(guān)系嗎?
附表及公式:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機(jī)構(gòu)對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進(jìn)行統(tǒng)計分析,得出下表數(shù)據(jù).
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測燃放煙花爆竹的天數(shù)為9的霧霾天數(shù).
相關(guān)公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x2的圖象在點(x0 , x02)處的切線為l,若l也與函數(shù)y=lnx,x∈(0,1)的圖象相切,則x0必滿足( )
A.0<x0<
B. <x0<1
C. <x0<
D. <x0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=logax(a>1)在[a,2a]上的最大值是最小值的2倍.
(1)若函數(shù)g(x)=f(3x2-mx+5)在區(qū)間[-1,+∞)上是增函數(shù),求實數(shù)m的取值范圍;
(2)設(shè)函數(shù)F(x)=f()(2x),且關(guān)于x的方程F(x)=k在[,4]上有解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,且經(jīng)過點,直線交橢圓于不同的兩點.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不過點,求證:直線的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△中,已知,直線經(jīng)過點.
(Ⅰ)若直線:與線段交于點,且為△的外心,求△的外接圓的方程;
(Ⅱ)若直線方程為,且△的面積為,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且點O為AC中點. (Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求二面角A﹣A1B﹣C1的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程(x﹣1)4+mx﹣m﹣2=0各個實根x1 , x2…xk(k≤4,k∈N*)所對應(yīng)的點(xi),(i=1,2,3…k)均在直線y=x的同側(cè),則實數(shù)m的取值范圍是( 。
A.(﹣1,7)
B.(﹣∞,﹣7)U(﹣1,+∞)
C.(﹣7,1)
D.(﹣∞,1)U(7,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com