【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為.

(1)求的值;

(2)若斜率為的直線與拋物線交于、兩點(diǎn),點(diǎn)為拋物線上一點(diǎn),其橫坐標(biāo)為1,記直線的斜率為,直線的斜率為,試問:是否為定值?并證明你的結(jié)論.

【答案】(1);(2)為定值,證明見解析

【解析】

1)由拋物線的定義可得,解出代入到拋物線方程即可得的值;(2)設(shè)直線的方程為,設(shè),,聯(lián)立直線與拋物線運(yùn)用韋達(dá)定理可得,根據(jù)斜率的定義化簡(jiǎn)可得,進(jìn)而可得結(jié)果.

(1)根據(jù)拋物線定義,點(diǎn)到焦點(diǎn)的距離等于它到準(zhǔn)線的距離,

,解得

∴拋物線方程為,

點(diǎn)在拋物線上,得,∴

(2)設(shè)直線的方程為,設(shè),,

消元化簡(jiǎn)得,

當(dāng)時(shí),直線與拋物線有兩交點(diǎn),

。

點(diǎn)坐標(biāo)為(1,1),

,,

,

所以為定值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生物研究者于元旦在湖中放入一些鳳眼蓮,這些鳳眼蓮在湖中的蔓延速度越來越快,二月底測(cè)得鳳眼蓮覆蓋面積為,三月底測(cè)得鳳眼蓮覆蓋面積為,鳳眼蓮覆蓋面積 (單位:)與月份(單位:月)的關(guān)系有兩個(gè)函數(shù)模型可供選擇.

1)試判斷哪個(gè)函數(shù)模型更合適并求出該模型的解析式;

2)求鳳眼蓮覆蓋面積是元旦放入面積倍以上的最小月份.

(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,且函數(shù))當(dāng)且僅當(dāng)在處取得極值,其中的導(dǎo)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,且過點(diǎn)(44),焦點(diǎn)為F

1)求拋物線的焦點(diǎn)坐標(biāo)和標(biāo)準(zhǔn)方程;

2P是拋物線上一動(dòng)點(diǎn),MPF的中點(diǎn),求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)是曲線上一點(diǎn),若點(diǎn)到曲線的最小距離為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且2,,成等差數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求數(shù)列的前項(xiàng)和;

(3)對(duì)于(2)中的,設(shè),求數(shù)列中的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示單位:cm,四邊形ABCD是直角梯形,求圖中陰影部分繞AB旋轉(zhuǎn)一周所成幾何體的表面積和體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為比較甲、乙兩地某月14時(shí)的氣溫狀況,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖.考慮以下結(jié)論:

①甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;

②甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;

③甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差小于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差;

④甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差.

其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的標(biāo)號(hào)為(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)的單調(diào)區(qū)間.

1fx)=3|x|;

2fx)=|x22x3|

查看答案和解析>>

同步練習(xí)冊(cè)答案